跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柏貝司
Prabesh Bista
論文名稱: 架設用於光電子能譜術之非共線性光參數 放大器
Development of a non-collinear optical parametric amplifier for photoelectron spectroscopy
指導教授: 江正天
Dr. Cheng-Tien Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 62
中文關鍵詞: 光學參數放大器雷射白光產生二次諧波生成光學自相關脈衝壓縮器
外文關鍵詞: optical parametric amplifier, Laser, pulse compressor, white-light generation, second harmonic generation, autocorrelation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非共線性光參數放大器(NOPA) 是在飛秒時間下用於時間解析光電子顯微鏡和能譜
    術的理想、可廣泛調變波長之光源。在這篇碩士論文中,構建了一個以時間解析光
    電子能譜術實驗為目標的NOPA 光源。該光源由中心波長約為1030奈米、脈衝長度
    為300 飛秒、重複頻率為1MHz 的雷射光源驅動。NOPA 光源的輸出波長範圍為630
    至960奈米,這是由初始光源在釔鋁石榴晶體中產生的白光種子光束所決定。在這個
    NOPA 光源的核心部分, β-硼酸鋇晶體由初始光源的二次諧波激發,而最後輸出再通
    過一對稜鏡以縮短脈衝長度,並使用另一個β-硼酸鋇晶體進行頻率倍增。
    v


    A non-collinear optical parametric amplifier (NOPA) is an ideal, widely-tuned light source
    for femtosecond time-resolved photoelectron microscopy and spectroscopy on surfaces. In this master
    thesis, an NOPA aiming at its application for pump-probe photoemission experiment has been built.
    The NOPA is driven by a fundamental laser source centered at around 1030 nm with a 300 fs pulse
    duration at a repetition rate of 1 MHz. The output of the NOPA has a wavelength range from 630 to 960 nm as given by its seed beam from the white light generation in an yttrium aluminum garnet plate driven by the fundamental beam. In the central part of this NOPA, a β-barium borate crystal
    is pumped by the second harmonic of the fundamental beam. The output of the NOPA is compressed by a
    prism pair to reduce the pulse duration, and its frequency is doubled by using another β-barium
    borate crystal.

    電子論文授權書Authorisation of the Electronic Thesis i 指導教授推薦書Recommendation Letter from the Thesis Advisor ii 口試委員審定書Verification from the Oral Examination Committee iii 英文摘要Abstract in English iv 中文摘要Abstract in Chinese v 誌謝Acknowledgements vi List of Figures ix List of Tables xi 1 Introduction 1 1.1 Second harmonic generation . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 White-light generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Optical parametric amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Experimental setup 7 2.1 Non-collinear optical parametric amplifier (NOPA) . . . . . . . . 7 2.2 Pulse compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 2.3 Second harmonic of the NOPA and its compressor . . . . . . . 13 3 Results 15 3.1 Pump beam of the amplifiers: second and third harmonic 15 3.2 Output of the green-pumped amplifier . . . . . . . . . . . . . . . . . 18 3.3 Autocorrelation traces of NOPA outputs . . . . . . . . . . . . . . . . . 21 3.4 Second harmonic generation of the NOPA outputs . . . . . . .25 4 Discussion 27 4.1 Pump beams: second / third harmonics . . . . . . . . . . . . . . . . . 27 4.2 Wavelength and Power of green-pumped NOPA . . . . . . . . . 29 4.3 NOPA output pulse duration . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Second harmonic of NOPA spectrum . . . . . . . . . . . . . . . . . . . . 36 5 Summary and outlook 39 Bibliography Appendix A 1

    [1] A. H. Zewail, Science 242, 1645 (1988).
    [2] R. Boyd, Nonlinear Optics (Academic Press, 1992).
    [3] Y.-R. Shen, Principles of nonlinear optics (Wiley-Interscience, 1984).
    [4] A. M. Weiner, Ultrafast optics (John Wiley & Sons, 2011).
    [5] P. Agostini and L. F. DiMauro, Rep. Prog. Phys. 67, 1563 (2004).
    [6] P. B. Corkum and F. Krausz, Nature physics 3, 381 (2007).
    [7] S. Ghimire and D. A. Reis, Nature Physics 15, 10–16 (2018).
    [8] G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [9] C. Manzoni and G. Cerullo, Journal of Optics 18, 103501 (2016).
    [10] R. Haight, Surface Science Reports 21, 275–325 (1995).
    [11] H. Petek and S. Ogawa, Progress in surface science 56, 239 (1997).
    [12] F. Boschini, M. Zonno, and A. Damascelli, Rev. Mod. Phys. 96, 015003 (2024).
    [13] M. Na, A. K. Mills, and D. J. Jones, Phys. Rep. 1036, 1 (2023).
    [14] O. Karni, I. Esin, and K. M. Dani, Adv. Mater. 35, 2204120 (2023).
    [15] N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
    [16] V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, J. Phys.: Condens. Matter 25,195302 (2013).
    [17] F. Langer, M. Hohenleutner, U. Huttner, S. W. Koch, M. Kira, and R. Huber, Nature Photonics 11, 227 (2017).
    [18] B.-H. Lei, S. Pan, Z. Yang, C. Cao, and D. J. Singh, Phys. Rev. Lett. 125, 187402 (2020).
    [19] R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
    [20] D. Anderson and M. Lisak, Phys. Rev. A 27, 1393 (1983).
    [21] M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
    [22] A.-L. Calendron, H. C¸ ankaya, G. Cirmi, and F. X. K¨artner, Opt. Express 23, 13866 (2015).
    [23] M. Bradler, Bulk continuum generation: The ultimate tool for laser applications and spectroscopy: From new insights to ultrafast amplifiers and spectrometers, Ph.D. thesis, Ludwig-Maximilians-Universit¨at M¨unchen (2014).
    [24] P. L. Baldeck, P. Ho, and R. Alfano, Rev. Phys. Appl. (Paris) 22, 1677 (1987).
    [25] A. Brodeur and S. L. Chin, J. Opt. Soc. Am. B 16, 637 (1999).
    [26] A.-L. Calendron, H. C¸ ankaya, G. Cirmi, and F. X. K¨artner, Opt. Express 23, 13866 (2015).
    [27] N. Ishii, M. Maruyama, K. Nagashima, Y. Ochi, and R. Itakura, Opt. Express 29,17069 (2021).
    [28] M. Bradler, P. Baum, and E. Riedle, App. Phys. B: Lasers and Optics 97, 561 (2009).
    [29] K. V. Lvov, S. Y. Stremoukhov, E. A. Migal, and F. V. Potemkin, Laser Phys. Lett.15, 085402 (2018).
    [30] R. Grigutis, G. Tamoˇsauskas, V. Jukna, A. Risos, and A. Dubietis, Opt. Lett. 45,4507 (2020).
    [31] A. Dubietis and A. Couairon, Ultrafast Supercontinuum Generation in Transparent Solid-State Media (2019).
    [32] R. Huber, H. Satzger, W. Zinth, and J. Wachtveitl, Opt. commun. 194, 443 (2001).
    [33] M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, Opt. Lett. 32, 1489 (2007).
    [34] G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Lett. 20, 1562 (1995).
    [35] V. Kozich, A. Moguilevski, and K. Heyne, Opt. Commun. 285, 4515 (2012).
    [36] S.-W. Huang, J. Moses, and F. X. K¨artner, Opt. Lett. 37, 2796 (2012).
    [37] T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
    [38] G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, G. Tempea, F. Krausz, and K. Ferencz, Opt. Lett. 24, 1529 (1999).
    [39] E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).
    [40] M. K. Reed, M. K. Steiner-Shepard, M. S. Armas, and D. K. Negus, J. Opt. Soc. Am. B 12, 2229 (1995).
    [41] A. Yariv, P. Yeh, and A. Yariv, Photonics: optical electronics in modern communications, 6th ed. (Oxford university press, Oxford, 2007).
    [42] A. Shirakawa and T. Kobayashi, Appl. Phys. Lett. 72, 147 (1998).
    [43] A. Shirakawa, I. Sakane, and T. Kobayashi, Opt. Lett. 23, 1292 (1998).
    [44] J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, Opt. Lett. 31, 1289 (2006).
    [45] A. M. Siddiqui, G. Cirmi, D. Brida, F. X. K¨artner, and G. Cerullo, Opt. Lett. 34, 3592 (2009).
    [46] H. Shen, S. Adachi, T. Horio, and T. Suzuki, Opt. Express 19, 22637 (2011).
    [47] A. Dubietis, G. Jonuˇsauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
    [48] D. N. Nikogosyan, Appl. Phys. B 52, 359 (1991).
    [49] L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Opt. Commun. 198, 433 (2001).
    [50] P. Kumbhakar and T. Kobayashi, Journal of Appl. Phys. 94, 1329 (2003).
    [51] V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, Appl. Phys. B: Lasers and Optics 70, 163 (2000).
    [52] A. Nautiyal, P. B. Bisht, K. S. Bindra, and S. M. Oak, Opt. Laser Technology 41, 539 (2009).
    [53] Carbide CB3-80W from Light Conversion, Lithuania.
    [54] β-barium borate from A-STAR Photonics, China.
    [55] Ytterbium aluminum garnet from Eksma Optics, Lithuania.
    [56] 3A-PF-12 thermopile sensor from Ophir Optronics, Isreal.
    [57] E. Wittmann, Taming Optical Parametric Amplification: Stable few cycle pulses at 210 to 10000 nm from Ti:Sapphire and Yb-based lasers, Ph.D. thesis, Ludwig-
    Maximilians-Universit¨at M¨unchen (2019).
    [58] J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, Appl. Opt. 24, 1270 (1985).
    [59] R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Springer International Publishing, 2012).
    [60] R. Sherriff, J. Opt. Soc. Am. B 15, 1224 (1998).
    [61] Sellmeier, Ann. Phys. 219, 272 (1871).
    [62] B. Tatian, Appl. Opt. 23, 4477 (1984).
    [63] R. L. Fork, J. P. Gordon, and O. E. Martinez, Opt. Lett. 9, 150 (1984).
    [64] pulseCheck NX 50 from APE Angewandte Physik & Elektronik GmbH, Germany.
    [65] J.-C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Elsevier, 2006).
    [66] M. N. Polyanskiy, Refractiveindex.info database of optical constants.Sci. Data 11, 94 (2024).
    [67] T.-I. Yang, Y.-W. Huang, P. Bista, C.-F. Ding, J. Chen, C.-T. Chiang, and H.-C. Chang, J. Phys. Chem. Lett. 13, 11280 (2022).
    [68] K. R. Keller, R. Rojas-Aedo, A. Vanderhaegen, M. Ludwig, and D. Brida, Opt. Express 31, 38400 (2023).
    [69] SmartEngineTM from OTO Photonics Inc., Taiwan.
    [70] Short-pass filter from Edmund Optics.
    [71] S. H¨ufner, Photoelectron Spectroscopy (Springer, 2003).
    [72] B. Di, X. Wen, W. Lei, Y. Zhang, L. Li, X. Xu, W. Kong, H. Chang, and W. Zhang,
    Appl. Phys. Lett. 123 (2023).
    [73] J. Nillon, O. Cr´egut, C. Bressler, and S. Haacke, Opt. Express 22, 14964 (2014).
    [74] E. Arthurs, D. Bradley, and A. Roddie, Appl. Phys. Lett. 19, 480 (1971).
    [75] W. Schmidt and F. P. Sch¨afer, Phys. Lett. A 26, 558 (1968).
    [76] Q. Guo, M. Dendzik, A. Grubiˇsi´c-ˇCabo, M. H. Berntsen, C. Li, W. Chen, B. Matta, U. Starke, B. Hessmo, J. Weissenrieder, et al., Struct. Dyn. 9 (2022).
    [77] M. Bradler and E. Riedle, Opt. Lett. 39, 2588 (2014).
    [78] C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, Opt. Lett. 33, 192 (2008).
    [79] C. Lee, T. Rohwer, E. J. Sie, A. Zong, E. Baldini, J. Straquadine, P. Walmsley, D. Gardner, Y. S. Lee, I. R. Fisher, and N. Gedik, Rev. Sci. Instrum. 91 (2020).
    [80] J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2005).
    [81] Technical notes of SF10 glass from SCHOTT.
    [82] R. L. Fork, B. I. Greene, and C. V. Shank, App. Phys. Lett. 38, 671–672 (1981).
    [83] C. Homann, C. Schriever, P. Baum, and E. Riedle, Opt. Exp. 16, 5746 (2008).
    [84] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals, 3rd ed. (Springer, 2013).
    [85] A. G. Wright, The photomultiplier handbook (Oxford University Press, 2017).
    [86] M. Puppin, Y. Deng, C. W. Nicholson, J. Feldl, N. Schr¨oter, H. Vita, P. Kirchmann, C. Monney, L. Rettig, M. Wolf, et al., Rev. Sci. Instrum. 90 (2019).
    [87] X. Zhou, B. Wannberg, W. Yang, V. Brouet, Z. Sun, J. Douglas, D. Dessau, Z. Hussain, and Z.-X. Shen, J. Electron Spectros. Relat. Phenomena 142, 27 (2005).
    [88] S. Hellmann, K. Rossnagel, M. Marczynski-B¨uhlow, and L. Kipp, Phys. Rev. B 79,035402 (2009).
    [89] F. Boschini, H. Hedayat, C. Dallera, P. Farinello, C. Manzoni, A. Magrez, H. Berger, G. Cerullo, and E. Carpene, Rev. Sci. Instrum. 85 (2014).
    [90] C. Bao, L. Luo, H. Zhang, S. Zhou, Z. Ren, and S. Zhou, Rev. Sci. Instrum. 92 (2021).

    QR CODE
    :::