跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周明中
Min-Chun Chou
論文名稱: 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
指導教授: 蔡富安
Fuan Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 紋理入侵性植物分類
外文關鍵詞: invasive plants, classification, texture
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 外來植物在人為刻意的大量栽植與繁殖以求在短期內獲取經濟利益的情況下,使得其數量大量增加,又未加以適當管理,進而造成對原有生態入侵之入侵樹種,因此對於外來植物物種的監測是當前的重要課題。目前對於外來植物的監測主要是採用人工現地調查的方式,不但費時耗力,而且對於調查成果掌握不易。隨著遙感探測技術的進步,應用遙測影像自動化分類便成為許多使用者之興趣所在。因此若能利用遙測技術在外來植物的監測上,會更省時省力且較為經濟。
    現今對於遙測影像的分析方法可分為光譜或紋理兩種方式,由於高解析力影像含有豐富的紋理資訊,尤其有利於紋理分析。本研究之目的在於利用GLCM紋理分析法進行高解析力衛星影像的分析以偵測恆春地區銀合歡的分布狀況,由於GLCM分析時移動視窗大小之選擇對於紋理分析之結果影響相當大,因此本研究先使用半變異元圖分析出較適合分類銀合歡及其他種植物之移動視窗大小。接著加入其他不同之GLCM分析參數如像元對方向及量化方式,計算出多張紋理影像。然後針對此多張紋理影像進行PCA轉換,選取最具差異性的紋理特徵加入原始光譜資訊,再使用最大似然法進行分類,最後使用地真資料進行檢核。


    The rapid spread of nonnative plant species have caused considerable negative impact to the biodiversity and ecosystems in Taiwan due to man-made planting in order to gain economic profits in short-term. For example of Leucaena, it has become a dominant species in south Taiwan and has caused an inbalance in local plant community. To address this issue, it is necessary to obtain correct information about the current status of nonnative species.
    Currently, the primary method of mapping invasive plants is field investigation, which is not only time-consuming but also very expensive. On the other hand, remote sensing offers a more timely and economical alternative. As the quality and availability of high resolution satellite imagery has improved dramatically in recent years, the analysis of high resolution images has become an important method in a varity of remote sensing researches and applications.
    The purpose of this study is to apply texture analysis of high resolution images to identify texture features that can distinguish target plants from other objects. The texture features can then be used to classify high resolution images in order to monitor the invasive plant species (Leucaena). Test results indicate that texture features obtained from this research can be used to successfully map Leucaena in the Ken-Ding National Park of southern Taiwan using high resolution satellite images.

    目錄 第一章 序論 1 1-1. 恆春地區外來入侵性植物-銀合歡 1 1-2. 研究動機與目的 4 1-3. 論文架構 9 第二章 紋理分析 10 2-1. 紋理 10 2-2. Gray Level Co-Occurrence Matrix (GLCM) 12 2-3. GLCM的量化方法 15 2-4 GLCM分析法的參數說明 17 2-4-1 輸入影像的灰階值範圍 17 2-4-2 移動視窗的大小 18 2-4-3 像元對δ的距離及方向 19 2-4-4紋理統計量之選擇 21 2-5 半變異元分析 24 2-6 主成分分析 - Principle Component Analysis (PCA) ……………………………………………………………..26 第三章 研究使用資料與方法 29 3-1 使用QUICKBIRD衛星影像之原因 29 3-2 QUICKBIRD多光譜衛星影像 31 3-3 1996年銀合歡密度分佈圖 34 3-4 研究方法與流程 38 3-5 利用NDVI濾除非植物地區 40 3-6 測試影像 42 第四章 研究成果 44 4-1 GLCM移動視窗大小分析 44 4-2 GLCM紋理分析 53 4-3 最大似然法分類 58 4-3-1 最大似然法 58 4-3-2 訓練區選取 59 4-3-3 分類成果 61 4-4 分類成果檢核 67 第五章 結論 84 參考文獻 87

    參考文獻
    賴明洲,1995。最新台灣園林觀賞植物名錄。地景企業股份有限公司 台灣台北 378頁。
    陳德順、胡大維,1976。台灣外來觀賞植物名錄。川流出版社 台灣台北 618頁。
    呂福原、陳民安,2002。墾丁國家公園外來種植物對原生植物群之影響以銀合歡為例,保育研究報告第112號。
    陳朝圳,2003。劣化生態系復育-外來樹種入侵對生態系之影響(銀合歡入侵調查),行政院農委會林務局委託研究計畫系列。
    蔣慕琰、徐玲明等,2003。台灣外來植物之危害與生態,小花蔓澤蘭危害與管理研討會專刊 97~109頁。
    黎瑋, ”紋理分析於遙測影像分類之研究” ,碩士論文, 國立中央大學,中壢1997。
    Abdulrahman Al-Janobi, 2001 , ”Performance evaluation of cross-diagonal texture matrix method of texture analysis” , Pattern Recognition ., Vol.34, pp 171-180.
    Arivazhagan, S., L. Ganesan , 2003 ,”Texture classification using wavelet transform”, Pattern Recognition Letters ., Vol.24, pp 1513-1521.
    Baraldi, A., and F. Parmiggiani, 1995.” An investigation of the Textural Characteristics Associated with Gray Level Coocurrence Matrix Statistical parameters”, IEEE Trans. On Geosci. And Remotte Sensing ., Vol.33, No.2, pp. 293-304.
    Barber, D.G., and E.F. LeDrew, 1991.”SAR Sea Ice Discrimination Using Texture Statistics: A Multivariate Approach” Photogrammetric Engineering & Remote sensing, Vol.57, No.4, pp. 385-395.
    Cohen, W.B., T.A. Spies, and G..A. Bradshaw, 1990, “Semivariograms of Digital Imagery for Analysis of Conifer Canopy Structure”, Remote Sensing Environment, Vol.34, pp. 167-178.
    Conners, R.W., C.A. Harlow, 1980a. “A theoretical Comparison of Texture Algorithms” , IEEE Trans. On Pattern Analysis and Machine Intelligence , Vol. PAMI-2, No.3, pp. 204-222.
    Conners, R.W., C.A. Harlow, 1980b. “Toward a Structural Textural Analyzer Based on Statistical Methods” , Computer Graphics and Image Processing , Vol. 12, pp. 224-256.
    Du Buf, J.M.H., M. Kardan, and M. Spann, 1990.” Texture Feature Performance for Image Segmentation”, Pattern Recogn., Vol. 23, pp. 291-309.
    Franklin, S. E., WULDER, M. A., and LAVIGNE, M. B., 1996, “Automated derivation of Geographic window size for remote sensing digital image texture analysis”, Computers & Geosciences,22, 665-673.
    Galloway, M.M., 1975. ”Texture Analysis Using Gray Level Run Lengths”, Computer Graphics and Image Processing, Vol.4, pp. 172-179.
    Haralick, R.M., K. Shaunmmugam, and I. Dinstein, 1973.” Textural Features for Image Classification”, IEEE Trans. On Syst., Man, and Cybern., Vol. SMC-3, No.6, pp. 610-620.
    Haralick, R.M., 1979. Statistical and Structural Approaches to Texture, Proc. IEEE, Vol. 67, pp. 786-804.
    Hay, G.J., K.O. Niemann, and G.F. Mclean, 1996. “An Object-Specific Image- Texture Analysis of H-Resolution Forest Imagery”, Remote Sens. Environ., Vol. 55, pp.108-122.
    Lee, Y.G., J.H. Lee., Y.C. Hsueh, 1998 , “Texture Classification Using Fuzzy Uncertainty Texture Spectrum” , Neurocomputing ., Vol.20, pp 115-122.
    Marceau, D.J., P.J. Howarth, J.-M.M. Dubois, and D.J. Gratton, 1990. ”Evaluation of the Grey-Level Co-Occurrence Matrix Method For Land-Cover Classification Using SPOT Imagery”, IEEE Trans. On Geosci. And Remote Sensing, Vol. 28, No.4, pp. 513-519.
    McGwire, K., M. Friedl, and J.E.Estes, 1993, Spatial Structure, Sampling Design and Scale in Remotely-Sensed Imagery of a California Savanna Woodland, International Journal of Remote Sensing, Vol. 14, No.11, pp. 2137-2164.
    Nystuen, J.A., and F.W. Garcia, 1992. “Sea Ice Classification Using SAR Backscatter Statistics”, IEEE Trans. On Geosci. And Remote Sensing, Vol. 30, No. 3, pp. 502-509.
    Ohanian P.P., R.c. Dubes, 1992. “Performance Evaluation for Four Classes of Textural Features” , Pattern Recogn., Vol. 25, pp. 819-833.
    Pultz, T.J., and R.J. Brown, 1987. “SAR Image Classification of Agricultural Targets Using First- and Second-Order Statistics” Canadian Journal of Remote Sensing, Vol. 13, No.12, pp. 85-91.
    Shokr, M.E., 1991. “Evaluation of Second-Order Texture Parameters for Sea Ice Classification From Radar Images ”, Journal of Geophysical Research, Vol. 96, No. C6, pp.10,625-10,640.
    Sun, C., and W.G. Wee, 1982. “Neighboring Gray Level Dependence Matrix for Texture Classification”. Computer Vision, Graphics and Image Processing, Vol. 23, pp. 235-245.
    Wang, L., and D.C. He, 1990. “A new Statistical Approach for Texture Analysis” . Photogrammetric Engineering & Remote Sensing, Vol. 56, No.1, pp. 61-66.
    Weszka, J.S., C.R. Dyer, and A.Rosenfeld, 1976. “A Comparative Study of Texture Measures for Terrain Classification”, IEEE Trans. On Syst., Man, and Cybern., Vol. SMC-6, No.4, pp.269-285.
    Lee, Y.G., J.H. Lee., Y.C. Hsueh, 1998. “Texture classification using fuzzy uncertainty texture spectrum” Neurocomputing, Vol. 20, pp. 115-122.

    QR CODE
    :::