| 研究生: |
余穎龍 Ying-Lung Yu |
|---|---|
| 論文名稱: |
生長奈米結構InGaN量子井用於表面增強拉曼散射 Growth of nanostructured InGaN quantum wells for surface enhanced Raman spectroscopy |
| 指導教授: |
賴昆佑
Kun-Yu Lai 簡汎清 Fan-Ching Chien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 氮化鎵 、拉曼量測 |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的世界中,科技日新月異,帶動了所有的相關產業。其中,生醫也成為了一種新興且快速成長的研究領域,為了維持優良的生活品質,生醫方面的相關知識也成了最炙手可熱的研究議題。表面增強拉曼散射(surface-enhanced Raman scattering, SERS)是一種檢測快速、靈敏度高又穩定,還具有再現特性,是一種極具潛力的生醫感測工具。在本研究中,為了改善SERS訊號的有效面積及穩定度,我們利用有機金屬化學氣相沉積法(metal organicchemical vapor deposition, MOCVD)成長氮化物SERS晶片。
我們以藍寶石基板,先將設定溫度在550 ℃,成長微米尺度的氮化鎵成核(nucleation)結構,再將溫度拉高至 1120 ℃,成長單晶氮化鎵,接著通入氫氣,藉由氫氣本身具有蝕刻效果的特性,使氫氣滯留反應艙內數秒至數分鐘,使氮化鎵表面變得粗糙且均勻,最後在磊晶多層量子井以提高樣品表面電荷密度。完成後,我們利用掃描式電子顯微鏡觀察SERS晶片的表面結構,並以rhodamine 6G (R6G)當作待測物分子來觀察拉曼訊號。根據量測果,我們發現氫氣的蝕刻效應及MOCVD的腔體壓力與SERS的訊號強度有密切的關係。
Surface-enhanced Raman scattering (SERS) is a biosensing technique with the advantages of high speed and high sensitivity. The technique has drawn tremendous research efforts in the last two decades.
In this study, we use metal organic chemical vapor deposition (MOCVD) to grow nanostructured InGaN SERS substrates, with the attempt to improve the scalability and reproducibility of SERS signals.
The MOCVD growth started with a GaN nucleation layer at 550 ℃ on the sapphire substrate. The substrate temperature was then increased to 1120 ℃ for the growth of high-quality GaN epitaxial layer. After that, hydrogen gas was introduced to the reactor, within which a roughened surface morphology of GaN was formed for the SERS structure. Finally, we grew InGaN/GaN multiple quantum wells (MQW) to increase electron on the surface. Scanning electron microscopy (SEM) was employed to observe the surface of the SERS samples and rhodamine 6G (R6G) was used as the analyte to evaluate the SERS intensity. It is found that the etching effect of H2 gas and reactor pressure of MOCVD play important roles in SERS effect on the nanostructure MQW.
[1] D. Z., Lin, “表面增強拉曼散射光譜的發展與應用” 工業材料 261, 150-155 (2008).
[2] Lisa A, Dick et al., “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy(SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss.” J. Phys. Chem. B106, 853-860 (2002).
[3] Bankowska, M. et al., “Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application.” J. Phys. Chem. C120, 1841-1846 (2016).
[4] Traci, R.J. et al., “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles.” J. Phys. Chem. B104, 10549 (2004).
[5] Yen Hsien, Yeh, “Hydrogen etching on the surface of GaN for producing patterned structures.” Journal of crystal growth 314, 9-12 (2011).
[6] T. H. Myers et al., “Use of high temperature hydrogen annealing to remove sub-surface damage in bulk GaN.” Journal of Crystal Growth 246, 244 (2002).
[7] Naoki Kobayashi, Yasuyuki Kobayashi, “In-situ optical monitoring of surface morphology and stoichiometry during GaN metal organic vapor phase epitaxy.” Applied Surface Science 398, 159-160 (2000).
[8] A. Rebey et al., “In situ optical monitoring of the decompositionof GaN thin films.” Journal of Crystal Growth 203, 12 (1999).
[9] Miho Mayumi et al., “In Situ Gravimetric Monitoring of Decomposition Rate from GaN Epitaxial Surface.” Japan Journal of Applied Physics 39, 707 (2000).
[10] Hellman E.S. “The Polarity of GaN: a Critical Review” MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).
[11] Catarina Costa M. et al., “Raman spectroscopy and coherent antiStokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration.” J. R. Soc. Interface 13 (2016).
[12] Wood, R.W. “On a remarkable case of uneven distribution of light in a diffraction grating spectrum.” Phil. Mag4 396 (1902).
[13] Fano, U. “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces.” J. Opt. Soc. Am 31, 213 (1941).
[14] Kelly, K.L. et al., “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment.” J. Phys. Chem. B107, 668 (2003).
[15] Kreibig, U. et al., “Optical Properties of Metal Clusters.” Vol. 25 (1995).
[16] 陳瑤真, “表面增強拉曼散射光譜應用於生物單分子偵測” 國立交通大學 (93).
[17] Jiang, J.D. et al., “Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface: Evidence for a charge-transfer excitation.” Phys. Rev. Lett. 57, 1793–1796 (1986).
[18] Juan, F.W. et al., “The role of charge-transfer states of the metal-adsorbate complex in surface-enhanced Raman scattering.” J. Phys. Chem. 112, 7669 (2000).
[19] Fan Ching, Chien, “Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots.” ACS Appl. Nano Mater. 2614–2620 (2021).
[20] Lombardi, J.R. “The theory of surface-enhanced Raman scattering on semiconductor nanoparticles: toward the optimization of SERS sensors.” Faraday Discuss. 205, 105-120 (2017).
[21] Eric C. et al., “Principles of Surface-Enhanced Raman Spectroscopy.“ Elsevier Amsterdam (2009).
[22] Dieringer, J. A. et al., “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule.” J. Am. Chem. Soc. 131, 849-854 (2009).
[23] Cong, S. et al., “Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies.” Nat Commun. 6, 7800 (2015).
[24] Ohkawa, K. et al., “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE.” J. Cryst. Growth 343, 13-16 (2012).
[25] Mukai, T. et al., “Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates.” Jpn. J. Appl. Phys. 38, 5735-5739 (1999).
[26] Jain P.K. et al., “Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing.” Nano Letters 8, 4347 (2008).
[27] Wang,S.Y.Study of surface-enhanced Raman scattering on nano-structured InGaN quantum wells. MS Thesis, National Central University(2018).
[28] Krishna, Seshan. “Handbook of Thin-Film Deposition Processes and Techniques” Noyes Publications, 2002
[29] 網路資料https://newton.ex.ac.uk/research/biomedical-old/optics/sers.html
[30] Fu Yun, Zhu, “3D nanostructure reconstruction based on the SEM imaging principle, and applications.” IOP, Nanotechnology. 25, (2014)
[31] Sugiura L. “Effects of thermal treatment of low temperature GaN buffer layers on the quality of subsequent GaN layers.” Journal of Applied Physics 82, 4877 (1997).
[32] Jin Yu, NI, “Effect of reactor pressure on the growth rate and structural properties of GaN films.” Chinese Sci Bull 54, 2595-2598 (2009).
[33] Ying, T, “Control of Initial Nucleation by Reducing the V/III Ratio during the early stages of GaN growth.” phys. Stat. sol. 180, 45 (2000).
[34] Yen Hsien, Yeh, “Hydrogen Etching on GaN and its Overgrowth, Journal of Crystal Growth.” Journal of Crystal Growth 333, 16–19 (2011).
[35] Dieringer J.A. et al., “Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule.” J. Am. Chem. Soc. 131, 849-854 (2009).