跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王道生
Tao-Sheng Wang
論文名稱: 融入極限壽命觀點之平均殘存壽命函數及其在產品品質保證的應用
指導教授: 張東生
Dong-Shang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
畢業學年度: 88
語文別: 中文
論文頁數: 50
中文關鍵詞: 平均殘存壽命函數瞬間故障率函數融入極限壽命觀點之平均殘存壽命函數融入極限壽命觀點之瞬間故障率函數平均殘存極限壽命函數預燒
外文關鍵詞: MRL(t), h(t), MRLb(t), hb(t), MRLL(t), burn-in
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在大部分的產品平均殘存壽命探討的研究中,對數常態分配和Birbaum-Saunders分配是兩個最廣為學術界和實務界探討的有關產品平均殘存壽命的統計分配。對數常態分配的平均殘存壽命函數會隨著時間的增加而趨近於無限,這是不符合一般傳統認為產品”殘存壽命”為有限的想法,而本研究就是針對此一問題,提出適當的解決辦法。
    研究中首先探討在傳統定義下的平均殘存壽命函數,並且將極限壽命的觀點融入傳統平均殘存壽命的定義中。經由極限壽命的觀念,本研究發展另一個衡量平均殘存壽命的新指標”平均殘存極限壽命(Mean Residual Limit Life)"。而本研究所提出之平均殘存極限壽命函數,較傳統指標合乎一般產品”殘存壽命”隨著時間的增加而遞減的想法。
    最後,研究融入極限壽命觀點之平均殘存壽命函數在預燒決策上之應用,我們可以發現修正前後產品之經濟性預燒決策沒有太大的不同。另外當考慮平均殘存極限壽命函數做為衡量預燒決策模式的平均殘存壽命指標時,則預燒決策只須考慮產品的瞬間故障率函數即可。


    目錄 第一章 緒論1 第一節 問題背景1 第二節 研究目的3 第三節 研究流程4 第二章 傳統平均殘存壽命函數的回顧5 第一節 平均殘存壽命函數5 第二節 平均殘存壽命函數與瞬間故障率函數6 第三節 對數常態分配與BIRNBAUM-SAUNDERS分配的情況9 第三章 融入極限壽命觀點之平均殘存壽命函數14 第一節 融入極限壽命觀點之平均殘存壽命函數的定義及其基本性質 14 第二節 對數常態分配和BIRNBAUM-SAUNDERS分配的結果17 第四章 平均殘存極限壽命函數26 第一節 基本構想與定義26 第二節 平均殘存極限壽命函數的性質27 第五章 應用修正後平均殘存壽命函數處理產品品質保證的預燒決策34 第一節 傳統浴缸型瞬間故障率函數的產品預燒決策34 第二節 瞬間故障率函數為單峰型的預燒決策34 第三節 融入極限壽命觀點之瞬間故障率函數的預燒決策38 第四節 範例說明41 第六章 結論46 第一節 研究結論46 第二節 未來的研究方向48

    中文部分:
    蘇香如”經濟性預燒政策之研究”,國立中央大學工業管理研究所碩士論文,民國85年。
    英文部分:
    M.C.Bhattacharjee, “Ordering policies for perishable items with unknown shelf life/variable supply distribution,” Indian Institute of Management, Calcutta, Technical Report, 1984.
    M.C.Bhattacharjee, “Ordering policies for perishable items with unknown shelf life/variable supply distribution,” Indian Institute of Management, Calcutta, Technical Report, 1984.
    R.C.Elandt-Johnson,N.L.Johnson, Survival Models and Data Analysis Wiley, New York, 1980.
    A.J.Gross, V.A.Clark, Survival Distributions:Reliability Applications in the Biomedical Sciences, Wiley, New York, 1975.
    D.S.Chang, L.C. Tang, ”Percentile bound and tolerance limits for the Birnbaum-Saunders,” Communication in Statistics-Theory and Methods, Vol 23,No 8, 1994 , pp 2853-2863.
    D.S.Chang, ”Optimal burn-in decision for products with an unimodal failure rate function,” European Journal of Operational Research, 2000, forthcoming.
    D.S. Chang, L.C. Tang, ”Reliability bounds and critical time for the Birbaum-Saunders distribution,” IEEE Trans. Relibaility, Vol 42, No 3, 1993.
    D.S.Chang, ”Critical time of the lognormal distribution ”, Micro- electronic&Reliability, Vol 34, No2, 1994, pp 261-266.
    E.L.Crow,K.Shimizu, Lognormal Distributions:Theory and Application, New York:M.Dekker, 1988.
    G.L.Ghai, J.Mi, ”Mean residual life and its association with failure rate,” IEEE Trans. Relibaility, Vol 48, No 3, 1999.
    K.K.Govil, K.K.Aggarwal, “Mean residual life function for normal, gamma and lognormal densities,” Relibaility Engineering ,Vol 5, 1983, pp 47-51.
    F.Guess, F. Proschan, ”Mean residual life:Theory and applications, “ Handbook of Statistics ( P.R. Krishnaiah, C.R.Rao ,Eds) Vol 7, 1988, pp 215-224.
    N.L.Johnson, Samuel Kotz, Continuous Univariate Distributions, New York : Wiley & Sons, 1994.
    W.Kuo,.Y.Kuo, ”Facing the headaches of early failures:A state-of- the-art review of burn-in decisions,” Proceedings of the IEEE, Vol 71, No 1, 1983, pp 1257-1266.
    J.F.Lawless, Statistical Models and Methods for Lifetime Data, 1982.
    J.Mi, “Bathtub failure rate and upside-down bathtub mean residual life,” IEEE Trans Relibaility, Vol 44, 1995, pp 388-391.
    D.G.Morrison, ”On linearly increasing mean residual lifetimes, ”J. Applied. Probability, Vol 15, 1978, pp 617-620.
    E.J.Muth, “Reliability models with positive memory derived from the mean residual life function,” The Theory and Applications of Reliability, Vol 2, 1977, pp 401-435.
    W.Nelson, Applied Life Data Analysis, New York: Wiley&Sons,Inc, 1982.
    D.G.Nguyen, D.N.P.Murthy, “Optimal burn-in time to cost minimize for products sold under warranty,” IIE Transactions, 14, 3 , 1982, pp 167-174.
    H.Schneider, Truncated and Censored Samples from Normal Popu- lations, New York:Marcel Dekker, 1986.
    L.C.Tang, Y.Lu, E.P.Chew, ”Mean residual life of lifetime distri- butions, ” IEEE Trans. Relibaility, Vol 48, No 1, 1999.

    QR CODE
    :::