| 研究生: |
劉偉正 Wei-Cheng Liu |
|---|---|
| 論文名稱: |
應用於ISM與Ka頻段之射頻收發機前端電路研製 Implementation of RF Transceiver Front-End Circuits for ISM and Ka Band Applications |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 線性功率放大器 、壓控振盪器 、次諧波混頻器 、低雜訊放大器 |
| 外文關鍵詞: | linear power amplifier, low noise amplifier, sub-harmonic mixer, voltage-controlled oscillator |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網際網路深入家庭,以及影音多媒體服務逐漸普及,消費市場對於網路頻寬的要求與日俱增。而手持式產品的流行,更推動了網路設備朝向無線領域發展的趨勢。射頻電路設計便是無線通訊中的一個關鍵技術,低雜訊放大器(low noise amplifier)、混頻器(mixer)、功率放大器(power amplifier)與壓控振盪器(voltage-controlled oscillator)都是其中的重要元件,這領域是一個非常具有發展性的研究主題。
本論文主要研究內容為射頻前端積體電路設計,電路應用的系統為ISM頻段的無線區域網路(wireless local area networks),以及Ka頻段的區域多點分散式服務系統(local multipoint distribution service)。其中,ISM頻段的電路以TSMC 0.35μm SiGe HBT製程與GCT 2.0μm GaAs HBT研製,包含可變增益低雜訊放大器(variable gain low noise amplifier)、次諧波混頻器(sub-harmonic mixer)、線性功率放大器(linear power amplifier)與壓控振盪器設計。Ka頻段的電路則是以WIN 0.15μm pHEMT製程研製,包含低雜訊放大器、次諧波混頻器、推動放大器(driver amplifier)與功率放大器設計。
ISM頻段電路經量測,可變增益低雜訊放大器的增益為19 dB,輸入1 dB壓縮點(1 dB compression point)為-23 dBm,雜訊指數(noise figure)為2.7 dB,增益控制範圍為7.2 dB;次諧波混頻器的轉換增益(conversion gain)為2.9 dB,輸入1 dB壓縮點為-7.4 dBm,訊號隔離度(signal isolation)大於30 dB;線性功率放大器的增益為18.3 dB,輸出1 dB壓縮點為23.2 dBm,附加功率效率(power added efficiency)為29.6 %;壓控振盪器的相位雜訊(phase noise)為-90.9 dBc/Hz,輸出功率為-7 dBm,可調頻率範圍為635 MHz。
Ka頻段電路經量測,低雜訊放大器的增益為24.8 dB,輸入1 dB壓縮點為-20 dBm,雜訊指數為3.1 dB;次諧波混頻器的轉換損耗(conversion loss)為10.5 dB,輸入1 dB壓縮點為9 dBm,訊號隔離度大於30 dB;推動放大器的增益為20.4 dB,輸出1 dB壓縮點為17 dBm,附加功率效率為29.4 %;功率放大器的增益為24.4 dB,輸出1 dB壓縮點為20.9 dBm,附加功率效率為20.8 %。
Due to internet is getting to go deep into households and multi-media services are getting popular, consumption market is demanding much fast internet speed. RF circuit design is one of the key technologies of the wireless communication systems. Low noise amplifiers, mixers, power amplifiers and voltage-controlled oscillators are key components. This field is a very promising research theme.
RF front-end integrated circuit design is the main research point of this paper, which apply to ISM band wireless local area network and Ka band local multipoint distribution service. Among above, ISM band circuit is implemented with TSMC 0.35μm SiGe HBT and GCT 2.0μm GaAs HBT processes, including variable gain low noise amplifier, sub-harmonic mixer, linear power amplifier and voltage-controlled oscillator designs; while Ka band circuit is implemented with WIN 0.15μm pHEMT , comprising low noise amplifier, sub-harmonic mixer, driver amplifier and power amplifier designs.
The measurement results of the ISM band circuit are as follows; for the variable gain LNA , gain is 19 dB, input power at the 1-dB gain compression point is -23 dBm, noise figure is 2.7dB, gain control range is 7.2 dB; for the sub-harmonic mixer, conversion gain is 2.9dB, input power at the 1-dB gain compression point is -7.4 dBm, signal isolation is greater than 30dB; for the linear power amplifier , gain is 18.3 dB, output power at the 1-dB gain impression point is 23.2dBm, power added efficiency is 29.6%; for the voltage-controlled oscillator , phase noise is -90.9 dBc/Hz, output power is -7 dBm, tuning range is 635 MHz .
The measurement results of the Ka band circuit are as follows; for the LNA , gain is 24.8 dB, input power at the 1-dB gain compression point is -20 dBm, noise figure is 3.1 dB; for the sub-harmonic mixer, conversion loss is 10.5 dB, input power at the 1-dB gain compression point is 9 dBm, signal isolation is greater than 30dB; for the driver amplifier , gain is 20.4 dB, output power at the 1-dB gain impression point is 17 dBm, power added efficiency is 29.4%; for the power amplifier , gain is 24.4 dB, output power at the 1-dB gain impression point is 20.9 dBm, power added efficiency is 20.8%.
[1] Razavi, B.,” RF IC design challenges,” Design Automation Conference, 1998. Proceedings , 15-19 June 1998
[2] Razavi, B.,” RF microelectronics,” Prentice Hall, 1998
[3] Razavi, B.,” Design considerations for direct-conversion receivers,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 44 Issue: 6 , June 1997
[4] Abidi, A.A.,” Direct-conversion radio transceivers for digital communications,” Solid-State Circuits, IEEE Journal of , Volume: 30 Issue: 12 , Dec. 1995
[5] Kai Chang, Inder Bahl, Vijay Nair, “RF and Microwave Circuit and Component Design for Wireless Systems,” John Wiley, New York, December 2001
[6] Ken Leong Fong, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International ,15-17 Feb. 1999
[7] Raja, M.K.; Boon, T.T.C.; Kumar, K.N.; Wong Sheng Jau, “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN”, Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE , 8-10 June 2003
[8] Matinpour, B.; Chakraborty, S.; Hamai, M.; Chun, C.; Laskar, J., “A novel dc-offset cancellation technique for even-harmonic direct conversion receivers,” Microwave Symposium Digest., 2000 IEEE MTT-S International , Volume: 2 ,11-16 June 2000
[9] Yamaji, T.; Tanimoto, H.,” A 2 GHz balanced harmonic mixer for direct-conversion receivers,” Custom Integrated Circuits Conference, 1997., Proceedings of the IEEE 1997 , 5-8 May 1997
[10] Liwei Sheng; Jensen, J.C.; Larson, L.E.,” A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” Solid-State Circuits, IEEE Journal of , Volume: 35 , Issue: 9 , Sept. 2000
[11] Nimmagadda, K.; Rebeiz, G.M.,” A 1.9 GHz double-balanced subharmonic mixer for direct conversion receivers”, Radio Frequency Integrated Circuits (RFIC)
[12] Yamauchi, K.; Mori, K.; Nakayama, M.; Itoh, Y.; Mitsui, Y.; Ishida, O.,” A novel series diode linearizer for mobile radio power amplifiers,” Microwave Symposium Digest, 1996., IEEE MTT-S International , Volume: 2 , 17-21 June 1996
[13] Yamauchi, K.; Mori, K.; Nakayama, M.; Mitsui, Y.; Takagi, T.,” A microwave miniaturized linearizer using a parallel diode with a bias feed resistance,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 45 , Issue: 12 ,Dec. 1997
[14] Yamauchi, K.; Mori, K.; Nakayama, M.; Mitsui, Y.; Takagi, T.,” A microwave miniaturized linearizer using a parallel diode,” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 3 , 8-13 June 1997
[15] Yoshimasu, T.; Akagi, M.; Tanba, N.; Hara, S.,” A low distortion and high efficiency HBT MMIC power amplifier with a novel linearization technique for π/4 DPSK modulation,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997. Technical Digest 1997., 19th Annual , 12-15 Oct. 1997
[16] Noh, Y.S.; Park, C.S.,” Linearized high efficiency HBT MMIC dual band power amplifier module for L-band applications,” Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 3 , 3-6 Dec. 2001
[17] Kim, J.H.; Noh, Y.S.; Park, C.S.,” High linear HBT MMIC power amplifier with partial RF coupling to bias circuit for W-CDMA portable application,” Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. 2002 3rd International Conference on , 17-19 Aug. 2002
[18] Kim, J.H.; Noh, Y.S.; Park, C.S.,” MMIC power amplifier adaptively linearized with RF coupled active bias circuit for W-CDMA mobile terminals applications,” Microwave Symposium Digest, 2003 IEEE MTT-S International , Volume: 3 , 8-13 June 2003
[19] Chang-Ho Lee, Joy Laskar.” Compact Ku-band transmitter design for satellite communication applications : from system analysis to hardware implementation,” Kluwer Academic Publishers, 2002
[20] Mernyei, F.; Pardoen, M.; Hoss, W.; Darrer, F.,” Fully integrated RF VCO for wireless transceivers,” Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on , 29 Sept.-2 Oct. 1998
[21] Kyranas, A.; Papananos, Y.,” A 5 GHz fully integrated VCO in a SiGe bipolar technology,” Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on , Volume: 5 , 28-31 May 2000
[22] Cordeau, D.; Paillot, J.-M.; Cam, H.; De Astis, G.; Dascalescu, L.,” A fully monolithic SiGe quadrature voltage controlled oscillator design for GSM/DCS-PCS applications,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 IEEE , 2-4 June 2002
[23] Stadius, K.; Kaunisto, R.; Porra, V.,” Monolithic tunable capacitors for RF applications”, Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on , Volume: 1 , 6-9 May 2001
[24] Application note 57-1,” Fundamentals of RF and Microwave Noise Figure Measurements,” Aglient Technologies
[25] Xiaojian Chen; Jun Liu; Junxian Wang, “Ka-band AlGaAs/InGaAs PHEMT monolithic low-noise amplifier”, Millimeter Wave and Far Infrared Science and Technology, 1996. Proceedings. 4th International Conference on , 12-15 Aug. 1996
[26] Hua-Shan Chou; Chieh-Chao Liu; Chen, T.H., “Ka-band monolithic GaAs PHEMT low noise and driver amplifiers”, Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 1 , 3-6 Dec. 2001
[27] Jong Seol Yuk; Byoung Gun Choi; Chul Soon Park, “Device and circuit optimization of PHEMT MMIC LNA for low power consumption”, Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 1 , 3-6 Dec. 2001
[28] Stephen A. Maas.” The RF and microwave circuit design cookbook,” Artech House, 1998
[29] Ang, K.S.; Baree, A.H.; Nam, S.; Robertson, I.D.,” A millimeter-wave monolithic sub-harmonically pumped resistive mixer,” Microwave Conference, 1999 Asia Pacific , Volume: 2 , Nov 1999
[30] Zirath, H.; Angelov, I.; Rorsman, N.,” A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” Microwave Symposium Digest, 1992., IEEE MTT-S International , 1-5 Jun 1992
[31] Virk, R.S.; Long Tran; Matloubian, M.; Minh Le; Case, M.G.; Ngo, C.,” A comparison of W-band MMIC mixers using InP HEMT technology,” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 2 , 8-13 Jun 1997
[32] Young-Gi Kim; Sung-Jae Maeng; Jin-Hee Lee; Chul-Soon Park,” A PHEMT MMIC broad-band power amplifier for LMDS,” Radio and Wireless Conference, 1998. RAWCON 98. 1998 IEEE , 9-12 Aug 1998
[33] Biedenbender, M.D.; Lee, J.L.; Tan, K.L.; Liu, P.H.; Freudenthal, A.; Streit, D.C.; Luong, G.; Lai, R.; Aust, M.V.; Allen, B.; Lin, T.S.; Yen, H.C.,” A power HEMT production process for high-efficiency Ka-band MMIC power amplifiers,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1993. Technical Digest 1993., 15th Annual , 10-13 Oct 1993
[34] Lai, R.; Grundbacher, R.; Barsky, M.; Oki, A.; Siddiqui, M.; Pitman, B.; Katz, R.; Tran, P.; Callejo, L.; Streit, D.,” Extremely high P1dB MMIC amplifiers for Ka-band applications,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2001. 23rd Annual Technical Digest , 2001