| 研究生: |
葉冠廷 Guan-Ting Yeh |
|---|---|
| 論文名稱: |
以週期性晶疇極化反轉鈦擴散式鈮酸鋰波導 絕熱耦合器作為全光開關之研究 Non-phase-matched all optical switching based on stimulated Raman adiabatic passage in Ti-diffused periodically poled lithium niobate waveguides |
| 指導教授: |
陳彥宏
Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 週期性晶疇極化反轉 、鈦擴散式鈮酸鋰波導 、絕熱耦合器 、全光開關 |
| 外文關鍵詞: | periodically poled, Ti-diffused lithium niobate waveguides, adiabatic coupler, all optical switching |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過光學材料像是鈮酸鋰晶體製作的波導耦合器能夠有將光/模態分開的功能,但當結構被訂定時其分光的結果就被決定了,也因此有許多的方法被發現能夠改變分光比,例如外加電場、改變材料特性或是光學調製。
在本論文中,透過設計特定的週期性極化反轉結構以及絕熱耦合器在鈮酸鋰晶體上,其入射光進入絕熱耦合器及週期性極化反轉結構時將會利用受激拉曼機制產生分光現象以及滿足準相位匹配產生倍頻現象,但當操作鈮酸鋰晶體的溫度在相位不匹配條件時,在基頻與倍頻轉換的過程中發現非線性相位改變,且透過增加輸入光強度也會增加其相位的改變,也就是轉換交互的過程變得更強。透過模擬,當外加高強度的光時波導兩個出口能夠得到分光比大於20dB的結果。這樣的光開關相比於電控開關來說,其調製的速度能夠快非常多,另外絕熱耦合器對於製程及輸入的波長也具有相當高的容忍度,是為一大優勢。
本研究中,利用鈦擴散波導製程製作40mm長的絕熱耦合器,產生倍頻的週期為17.22um,當輸入波長1550nm且尖端功率為589W的脈衝雷射時能夠得到分比從1:9改變至3:7,而進一步改善討論將會在後續探討。
週期性極化反轉鈮酸鋰產生倍頻在絕熱耦合器上的全光開關設計具有操作簡單、穩定以及高製程容忍度,這樣的設計對於未來積體光路以及光邏輯閘的實現將會是一大進步。
Waveguide couplers can perform the beam/mode splitting of an optical wave based on an optical material like lithium niobate crystal. However, usually the split ratio of a wave in couplers is fixed when the structure of the coupler is fabricated. Hence many methods have been discovered to enable the varying of the split ratio actively, such as applying voltages, modifying material properties, and using optical modulation.
In this thesis, I design a specific periodically poled structure and an adiabatic coupler in a lithium niobate crystal. The periodically poled structure is used to quasi-phase-match a second-harmonic generation (SHG) process of the fundamental wave as a pump for exciting a three-waveguide adiabatic coupler system designed based on the stimulated Raman adiabatic passage mechanism. When operated at a proper phase mismatching condition of the SHG process via the temperature control of the lithium niobate crystal, a nonlinear phase shift between the fundamental and the second harmonic waves will occur during their power conversion process, increased with the increase of the input power according to dispersion relationship between the two interacting waves. This nonlinear phase shift effect causes the change of the propagation constant of the waveguide seen by the input wave and therefore changes the coupling condition of the adiabatic coupler. Ideally in my simulation, the switching between the two outer waveguides of the coupler can reach an extinction ratio of >20 dB when a properly high input power is used. Such an all optical switching device is attractive in contrast to other optical switching methods because it is relatively fast without the need of an external phase modulation mechanism using such as a fast voltage supplier. Besides, the device is robust as the use of the adiabatic coupler featured by high fabrication tolerance and broad bandwidth.
In this study, a PPLN SHG of period 17.22 m is fabricated in the input arm of a 40-mm long adiabatic coupler comprising three Ti-diffused lithium niobate waveguides. An optical switching with a split ratio of from ~1:9 to 3:7 has been observed from such a device when pumped by a 1550-nm ps laser of a peak power 589 W. Further improvement of the performance of the device is discussed.
The proposed PPLN SHG adiabatic coupler all-optical-switching device can be operationally simple, robust, and fabrication tolerant, which can be of great potential for many applications including optical logic gates in integrated optical circuits.
[1] A. Einstein, “Zum gegenwärtigen Stande des Strahlungsproblems.” Physikalische Zeitschrift, Band 10, Seite, p.185–193, (1909)
[2] M. Planck, “On the law of distribution of energy in the normal spectrum.”, Annalen der physik 4.553, p.1, (1901)
[3] E. M. Purcell and R. V. Pound, “A Nuclear Spin System at Negative Temperature.”, Physical Review Letters. 81, 1951
[4] T. H. Maiman, “Stimulated Optical Radiation in Ruby.”, Nature, 187, 1960
[5] S. E. Miller, “Integrated Optics : an Introduction.”, Bell System Technical Journal, 48, 1969
[6] W. H. Zachariasen, “Skr. Norske Vid-Ada.”, Oslo, Mat. Naturv, No.4, (1928)
[7] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique.”, J. American Ceram. Soc. 48, p.112, (1965)
[8] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料–鈮酸鋰晶體」,科學出版社,2005
[9] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate.”, Optics letters, Vol.22, No.20, pp. 1553-1555, 1997
[10]R. V. Schmidt, “Efficient optical waveguide switch/amplitude modulator” Opt. Lett., vol.2, No.2, 1978.
[11]Yijing Chen, Seng-Tiong Ho, Vivek Krishnamurthy, “All-optical switching in a symmetric three-waveguide coupler with phase-mismatched absorptive central waveguide”, Applied Optics , 52(36), 8845, 2013
[12] Gaubatz, U., et al. "Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results."The Journal of Chemical Physics92.9 (1990): 5363-5376.
[13] Bergmann, K., H. Theuer, and B. W. Shore. "Coherent population transfer among quantum states of atoms and molecules."Reviews of Modern Physics70.3 (1998): 1003.
[14] A. Yariv and P. Yeh, “Optical waves in Crystals.”, Wiley, New York, 1983
[15] J. E. Midwinter and J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization.”, British Journal of Applied Physics, Vol. 16, No. 8, 1962
[16] M. V. Hobden and J. Warner, “The Temperature Dependence of The Refractive Indices of Pure Lithium Niobate.”, Physics Letters, 22, 1966
[17] Yen-Chieh Huang, “Principles of Nonlinear Optics Course Reader.”, Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007
[18] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric.”, Physical Review, Vol. 127, 1962
[19]G.I. Stegeman, “χ^((2))cascading: nonlinear phase shifts.”, Quantum Semiclass. Opt. 9 139, 1997
[20] R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium niobate optical directional couplers ” Appl.Opt. 18, p4012-4016, 1979
[21]楊松霖“以週期性晶疇極化反轉鈦擴散鈮酸鋰波導晶片作為偏振可調定向耦合器之研究” 國立中央大學光電工程所碩士論文,2013
[22]黃光旭“三通道鈦擴散式鈮酸鋰波導絕熱耦合器之研究”國立中央大學光電工程所碩士論文, 2014
[23] H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides” Optics express, p. 30641-30650, 2015
[24] Klyoshi Nakamura, and Haruyasu Ando, and Hiroshi Shimizu , “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment.” Appl. Phys. Lett., 50, 18, 1987
[25]Bor-Uei Chen, Antonio C. Pastor, and Hiroshi Shimizu , “Elimination of Li20 out-diffusion waveguide in LiNbO3 and LiTaO3” Appl. Phys. Lett., 30, 11, 1977
[26] G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed an cw pumping,” Appl. Phys. B, 73, p501-504 , 2001
[27] L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization switching of Lithium Niobate.” Appl. Phys. Lett., 81, p1666-1668 , 2002
[28] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic-generation,” Appl. Phys. Lett., 62, p435-436 ,1993
[29] Henk J. Bolink, Gustaaf R. Moehlmann, Victor V. Krasnikov, George G. Malliaras, Georges Hadziioannou, “Photorefractive polymer materials”, Nonlinear Optical Properties of Organic Materials VI (SPIE Proceedings) , 2025, 292, 1993