跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊書聞
Shu-Wen Yang
論文名稱: 金屬儲氫罐熱傳增強設計與實驗分析
Design and Experimental Analysis of Heat Transfer Enhancement for Hydride Storage Canisters
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 84
中文關鍵詞: LaNi5儲氫罐金屬氫化物氫氣
外文關鍵詞: Hydrogen, Metal Hydride, hydrogen storage canister, LaNi5
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文使用LaNi5儲氫合金進行儲氫罐之吸放氫實驗,利用中空圓柱型儲氫罐探討儲氫罐於吸放氫之熱流特性,並於了解其特性後,針對其缺失設計另一添加熱管與內鰭片之熱傳增強儲氫罐以進行改良,最後再比較兩種儲氫罐吸放氫之性能,了解熱傳效率對於儲氫罐應用上之影響。
      LaNi5由於合金吸氫為放熱反應,因此由中空圓柱型儲氫罐的吸氫實驗,可發現在只有水浴環境的情況下,受到儲氫合金熱阻影響,罐體中心並無良好的散熱能力,使得吸氫反應是由罐體表面往中心移動;而供氫壓力越大、環境溫度越低,皆會造成供氫壓力與吸氫平衡壓有較大之壓差,能縮短吸氫時的反應時間。放氫時,LaNi5合金為吸熱反應,在僅能依靠水浴環境藉由罐體表面傳遞熱能予儲氫合金的情況下,亦可發現放氫反應是由罐體表面向中心移動。若限制放氫體積流率,則環境溫度越高,維持設定之體積流率時間越長;若不限制體積流率,則溫度越高其放氫速率會越快,且溫度越高可釋放的氫氣量也越多。
      使用熱傳增強儲氫罐,可在吸放氫時藉由鰭片與熱管增強罐體中心的合金與外界進行熱交換,讓吸放氫方向可由內而外與由外而內同時進行,吸氫速率相較於中空圓柱型儲氫罐增加三倍,合金最高溫度降低了20°C。而放氫速率相較於中空圓柱型儲氫罐提升44%的效能,合金最低溫度約提高10°C。顯示此熱傳增強儲氫罐有效的改善罐體中心熱傳不佳的問題。


      This thesis presents an experimental study of the impact of heat transfer on the performance of hydrogen absorption and desorption processes using LaNi5 hydrogen storage alloy. A hollow cylindrical storage tank and a cylindrical tank with a heat pipe and internal fins were designed and made to test the hydrogen storage characteristics and to demonstrate the storage efficiency improved by the heat transfer application.
      Results from the experiments showed that when LaNi5 absorbed hydrogen, heat was released by the exothermic reaction. The rising temperature in turn raised the metal’s equilibrium pressure for hydrogen absorption and reduced the pressure difference from the hydrogen supply. Accordingly the hydriding reaction slowed down. Therefore, the greater the supply pressure of hydrogen and lower the ambient temperature of water bath, the quicker hydrogen could be charged into the hollow cylindrical tank. On the other hand, when the metal hydride desorbed hydrogen, heat was taken by the endothermic reaction. The descending temperature in turn reduces the metal’s equilibrium pressure for hydrogen desorption and reduced the pressure difference to the back pressure. The dehydriding reaction then slowed down as a result. Therefore, the higher the ambient temperature, the quicker hydrogen could be discharged from the storage tank. The above results indicated that enhancing heat transfer between the metal powders and the surrounding water bath should improve the performance of the storage tank.
      To this end, a pilot design of hydrogen storage tank was made with a heat pipe and internal fins to increase the heat transfer rate. The heat pipe facilitated heat exchange between the central region of tank and the ambient water bath. The internal fins increased the effective conductivity of the metal bed. Experiments showed that hydrogen reactions occurred more evenly in the fined tanked than in the bare cylindrical tank. Accordingly, hydrogen uptake reached three times quicker and the alloy maximum temperature reduced as much as 20°C in the hydriding case, and hydrogen release rate was 44% quicker and the lowest temperature was increased by about 10°C in the dehydriding case for the heat transfer enhanced design. This thesis demonstrates that heat transfer enhancement could effectively improve the performance of hydrogen storage tank and may serve as a reference for the design of hydrogen storage tanks based on metal hydrides.

    中文摘要  i 英文摘要  ii 誌謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論  1 1.1 前言  1 1.2 金屬儲氫  3   1.2.1 吸放氫原理  4 1.2.2 PCI曲線  5 1.2.3 儲氫合金  6 1.3 文獻回顧  7 1.4 研究動機  8 第二章 實驗方法  12 2.1 儲氫罐設計  12   2.1.1 中空圓柱型儲氫罐  12   2.1.2 熱傳增強儲氫罐  13 2.2 熱管  13 2.3 實驗系統  14 2.4 實驗步驟  15   2.4.1 活化  15   2.4.2 吸氫  16   2.4.3 放氫  16   2.4.4 排水集氣法  16 第三章 結果與討論  33 3.1 中空圓柱型儲氫罐的吸氫特性  33   3.1.1 儲氫罐內部隨著吸氫過程的溫度變化 33   3.1.2 供氫壓力對吸氫的影響  34   3.1.3 環境溫度對吸氫的影響  35 3.2 熱傳增強儲氫罐的吸氫特性  36 3.3 中空圓柱型儲氫罐的放氫特性  37   3.3.1 儲氫罐內部隨著放氫過程的溫度變化 37   3.3.2 不同環境溫度對於放氫的影響(限制最大放氫流率)  37   3.3.3 不同環境溫度對於放氫的影響(不限制最大放氫流率) 38 3.4 熱傳增強儲氫罐的放氫特性  39 第四章 結論與未來展望  68 4.1 結論  68 4.2 未來展望  69 參考文獻  70 附錄A 儲氫罐壁厚計算  72 附錄B 螺絲選擇  73

    Anani, A., Visintion, A., Petrov, K. and Srinivasan, S. Alloys for hydrogen Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries. Journal of Power Sources 1994; 47: 261-275.
    Askri, F., Jemni, A. and Nasrallah, SB. Prediction of transient heat and mass transfer in a closed metal-hydrogen reactor. International Journal of Hydrogen Energy 2004; 29: 195-208.
    Botzung, M., Chaudourne, S., Gillia, O., Perret, C., Latroche, M., Percheron-Guegan A. and Marty, P. Simulation and experimental validation of a hydrogen storage tank with metal hydrides. International Journal of Hydrogen Energy 2008; 33: 98-104.
    Brendan, D., MacDonald, Andrew, M., Rowe. Impacts of external heat transfer enhancements on metal hydride storage tanks. International Journal of Hydrogen Energy 2006; 31: 1741-1731.
    Demircan, A., Demiralp, M., Kaplan, Y., Mat, Md. and Veziroglu, TN. Experimental and theoretical analysis of hydrogen absorption in LaNi5-H2 reactor. International Journal of Hydrogen Energy 2005; 30: 1437-1446.
    Dhaou, H., Souahlia, A., Mellouli, S., Askri, F., Jemni, A. and Nasrallah, SB. Experimental study of a metal hydride vessel based on a finned spiral heat exchanger. International Journal of Hydrogen Energy 2010; 35:1674-1680.
    Jemni, A., Nasrallah, SB. and Lamloumi, J. Experimental and theoretical study of a metal-hydrogen reactor. International Journal of Hydrogen Energen 1999; 24: 631-644.
    Kaplan, Y. Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors. International Journal of Hydrogen Energy 2009; 34: 2288-2294
    Martin, M., Gommel, C., Borkhart, C. and Fromm, E. Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds 1996; 238: 193-201.
    Mellouli, S., Askri, F., Dhaou, H., Jemni, A. and Nasrallah, SB. A novel design of a heat exchanger for a metal-hydrogen reactor. International Journal of Hydrogen Energy 2007; 32: 3501-3507.
    Sandrock, G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds 1999; 293-295: 877-888.
    Züttel, A. Materials for hydrogen storage. Materials Today 2003; September: 24-33.
    Joseph ES, Charles RM 著,機械工程設計(上),蘇金佳 譯,東華書局,pp.379-381,1995。
    M.F. Spotts, T.E. Shoups 著,機械元件設計,吳嘉祥 等譯,高立圖書,pp.327-328,1998。
    大西清 著,機械設計製圖便覽,洪榮哲、黃廷合 編譯,全華出版社,pp.14.2-14.7,2005。
    毛宗強,氫能-21世紀的綠色能源,新文京開發,pp.63-156,2008。
    李方正,新能源,新文京開發,pp.8-10,2009。
    依日光,熱管技術理論實務,復漢出版社,pp.1-16,1998。
    曲新生、陳發林,氫能技術,五南書局,pp.59-104, 2006。
    胡子龍,儲氫材料,曉園出版社,pp.90-167,2006年。

    QR CODE
    :::