| 研究生: |
李昀珊 Yun-shan Li |
|---|---|
| 論文名稱: |
豪雨引致短期存在堰塞湖天然壩壩體形狀重建方法探討 Reconstruction of the dam geometry of a heavy rainfall-triggered, short-lived landslide dam |
| 指導教授: |
董家鈞
Jia-Jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 堰塞湖 、莫拉克颱風 、天然壩 、地形參數 、壩體幾何形狀重建 |
| 外文關鍵詞: | Dam geometry reconstruction, Geomorphic parameters, Landslide dam, Typhoon Morakot |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據文獻資料,堰塞湖潰決時間通常很短,相對於地震引致之堰塞湖,豪雨引致之堰塞湖事件,通常文獻報導較少,且相關描述相當不完整。為增添豪雨引致堰塞湖完整案例,有必要發展壩體幾何形狀建立或重建技術,以有效獲得快速潰決之壩體地形基本參數。本研究目標為建立快速評估堰塞湖天然壩幾何形狀之方法,並先以未潰決之那瑪夏鄉堰塞湖為驗證案例,再應用於已潰決之小林村堰塞湖案例。首先利用災前DTM資料、災後航照圖,配合野外調查,以重建那瑪夏鄉堰塞湖天然壩幾何形狀,並與實測地形比較,以驗證本研究建議之壩體重建方法。其次再以同樣方法,額外考量崩塌與壩體積平衡以及堰塞湖的溢流時間,以重建小林村堰塞湖天然壩幾何形狀,並進行壩體穩定性分析。根據本研究建議之壩體幾何形狀快速重建技術,那瑪夏鄉堰塞湖之壩體積為8.91 million m3,溢流點之壩高為與最大壩高分別為60 m及68 m,壩頂寬(沿河道)為2202 m,最大壩頂長(跨河道)及通過溢流點之壩頂長分別為213 m及179 m,與實測地形資料比較,本研究建立之天然壩幾何形狀重建技術可合理地評估天然壩幾何特徵;小林村堰塞湖天然壩壩體積則為15.34 million m3,溢流點之壩高及最大壩高分別為44 m及60 m,壩頂寬(沿河道)為1554 m,最大壩頂長(跨河道)及通過溢流點之壩頂長分別為500 m及370 m,根據壩體材料組成、推論之壩體幾何形狀與水文參數研判,小林村堰塞湖天然壩潰壩為溢流造成,與邊坡破壞或管湧關聯性較低。
According to literature, landslide dams usually collapse within a short time. Landslide dams are largely triggered by heavy rainfall more so than by earthquakes. Therefore, it is critical to develop a technique for reconstructimg the dam geometry, and to aollect some topography and hydrologic parameters, and to collect some topography and hydrologic parameters, then proceed with the statistical analysis. Typhoon Morakot brought a huge amount of rainfall, which caused many landslide dams in Southern Taiwan in 2009. We have used the Namasiam landslide dam as a basis for this study. DTM and aerial photography is used to reconstruct the dam geometry. The same is conducted for the Xiaolin landslide dam. Particular attention has been paid to stay within the budget and timeframe set. In summary, the total volume of the Namasia landslide dam is estimated to be 8.91 million m3, the dam breach hight is 60 m, the maximum dam height are 68 m, the dam width (along valley) is 2202 m, the maximum of dam length (across valley) is 213 m, and the outflow through the breach to the dam is 179 m. The total volume of the Xiaolin landslide dam is estimated to be 15.34 million m3, the dam breach hight is 44 m, the maximum dam height is 60 m, the dam width (along valley) is 1554 m, the maximum of dam length (across valley) is 500 m and flow through the breaching point of dam length is 370 m. The Xiaolin landslide dams and the Namasia landslide dams were classified as unstable based on DBI and discriminant analysis. The results can enable natural dams to be formed and the assessment of landslide dam stability.
[1] Ermini, L., Casagli, N., “Prediction of the behavior of landslide dams using a geomorphological dimensionless index”, Earth Surface Processes and Landforms, Vol. 28, pp. 31-47, 2003.
[2] Costa, J. E., Schuster, R. L., “A perspective on landslide dams”, In Schucter, R. L.(Edited), Landslide dam : Processes Risk and Mitigation, Vol. 3, pp. 1-20, 1986.
[3] Kroup, O., “Recent research on landslide dams – a literature review with special attention to New Zealand”, Progress in Physical Geography, Vol. 26, pp. 206-235, 2002.
[4] Kroup, O., “Geomorphometric characterisyics of New Zealand landslide dam”, Engineering Geomorphology, Vol. 73, pp. 13-35, 2004.
[5] 陳昆廷、臧運忠、郭玉樹、呂明鴻、謝正倫,「莫拉克颱風引致堰塞湖之案例分析」,中國防災學會,第2卷第1期(莫拉克特輯),43-50頁,2010。
[6] Schuster, R. L., “Landslide dams – a worldwide phenomenon”, Proceedings Annual Symoposium of The Japanese Landslide Society, Kansai Branch, Osaka, pp. 1-23, 27 April.
[7] Peng, M., Zhang, L. M., “Breaching parameters of landslide dams”, Landslide, doi:10.1007/s10346-011-0271-y, 2011.
[8] Costa, J. E., Schuster, R. L., “The formation and failure of natural dams”, Geological Society of America Bulletin, Vol. 100, pp. 1054-1068, 1988.
[9] 高橋保、匡尚富,「天然ダムの決壊による土石流の規模に関する研究」,京都大學防災研究所年報,第31號,B-2,1988。
[10] Kroup, O., “Geomorphic hazard assessment of landslide dam in South Westland, New Zealand : fundamental problems and approaches”, Geomorphology, Vol. 66, pp. 167-188, 2005.
[11] 田畑茂清、水山高九、井上公夫,天然ダムと災害,古今書院,東京,2002。
[12] Dong, J. J., Tung, Y. H., Chen, C. C., Liao, J. J., Pan, Y. W., “Discriminant analysis of the geomorphic characteristics and stability of landslide dams”, Geomorphology, Vol. 110, pp. 162-171, 2009.
[13] 童煜翔,「山崩引致之堰塞湖天然壩穩定性之量化分析」,國立中央大學應用地質研究所,碩士論文,民國九十六年。
[14] 經濟部水利署水利規劃試驗所,堰塞湖引致災害防治對策之研究總報告,經濟部水利署水利規劃試驗所,台中,民國九十三年十二月。
[15] Dong, J. J., Tung, Y. H., Chen, C. C.,Liao, J. J., Pan, Y. W., “Logistic regression model for predicting the failure probability of a landslide dam”, Engineering Geology, Vol. 177, pp. 52-61, 2010.
[16] Costa, J. E., Schuster, R. L., “Documented historical landslide dams from around the world”, US Geological Survey Open-File Report, 91-239, pp.486, 1991.
[17] Mandrone, G., Clerici, A., Claudio, T., “Evolution of a landslide creating a temporary lake : successful prediction”, Quaternary International, Vol. 171-172, pp. 72-79, 2007.
[18] Chang, K. J., Taboada, A., Chan, Y. C., Dominguez, S., “Post-seismic surfave processes in the Jiufengershan landslide area, 1999 Chi-Chi earthquake epicentral zone, Taiwan”, Engineering Geology, Vol. 86, pp. 102-117, 2006.
[19] Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T., Lin, M. L., “Topographical changes revealed by high-resolution airborne LiDAR data : The 1999 Tsaoling landslide induced by Chi-Chi earthquake”, Engineering Geology, Vol. 88, pp. 160-172, 2006.
[20] 廖志中、董家鈞、潘以文、徐志謙、謝勝彥、彭瑞國、吳文賢,堰塞湖形成與存在之探討,第十屆大地工程研討會,台北,三峽,2003。
[21] 成功大學,旗山溪(那瑪夏鄉)、士文溪(春日鄉)二處堰塞湖調查評估及短中長期處理對策研擬計畫成果報告書,財團法人成大研究發展基金會,2011。
[22] 李錫堤、董家鈞和林銘郎,「小林村災變之地質背景探討」,地工技術,第122期,87-94頁,2009。
[23] Casagli,N., Ermini, L., Rosati, G., “Determining grain size distribution of the material composing landslide dams in the Northern Apennines : sampling and processing methods”, Engineering Geology, Vol. 69, pp. 83-87, 2003.
[24] ASTM D2216 – 10, “Standard test method for laboratory determination of water (moisture) content of soil and rock”, Annual Book of ASTM Standards, Vol. 04.08, pp. 188-191, 2010.
[25] ASTM D854 – 06, “Standard test methods for specific gravity of soil solids by water pycnometer”, Annual Book of ASTM Standards, Section 4, Vol. 04.08, Soil and Rock (I), ASTM, West Conshohocken, PA.
[26] ASTM D4318 – 05, “Standard test method for liquid limit, plastic limit, and plasticity index of soils”, Annual Book of ASTM Standards, Vol. 04.08, pp. 519-529.
[27] ASTM D422 – 63, “Standard test method for particle-size analysis of soils”, Annual Book of ASTM Standards, Vol. 04.08, pp. 10-16.
[28] ASTM D2487 – 06, “Standard classification of soils for engineering purposes (unified soil classification system)”, Annual Book of ASTM Standards, Vol. 04.08, pp. 217-238.
[29] Hungr, O., Evans, S. G., “Entrainment of debris in rock avalanches : an analysis of a long run-out mechanism”, Geological Society of America Bulletin, Vol. 116, pp. 1240-1252, 2004.
[30] Li, M.H., Sung, R.T., Dong, J.J., Lee, C.T., Chen C.C., “The formation and breaching of a short-lived landslide dam at Siaolin village, Taiwan - Part II: simulation of debris flow with landslide dam breach”, Engineering Geology, doi:10.1016/j.enggeo.2011.05.002 , 2011.
[31] Dong, J. J., Li, Y. S., Kuo, C.Y., Sung, R. T., Li, M. H., Lee, C. T.,Chen, C. C., Lee, W. R., “The formation and breach of a short-lived landslide dam at Siaolin villiage, Taiwan – Part I: Post-event reconstruction of dam geometry”, Engineering Geology, doi:10.1016/j.enggeo.2011.04.001, 2011.
[32] Tsou, C.Y., Feng, Z.Y., Chigira, M.,.”Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan”, Geomorphology, Vol. 127, pp.166–178, 2011
[33] 經濟部水利署水利規劃試驗所,堰塞湖危險度、危害度評估方法與堰塞湖處置資訊管理系統建置(初稿),經濟部水利署水利規劃試驗所,台中,民國一百年五月。
[34] Kuo, C.Y., Tai, Y.C., Chen, C.C., Chang, K.J., Siau, A.Y., Dong, J.J., Han, R.H., Shimamoto, T., Lee, C.T., “The landslide stage of the Siaolin catastrophe: simulation and validation”. Journal of Geophysical Research, submitted, 2011.
[35] Chang, P. Y., Chen, C. C., Chang, S. K., Wang, T. B., Wang, C.Y., Hsu, S.K., “An ERT-based investigation into the typhoon Morakot-induced debris flow in the Xiaolin area, southern Taiwan”, Geophysical Journal International, submitted, 2011.
[36] 經濟部水利署水利規劃試驗所,堰塞湖引致災害防治對策之研究(2/3)第二年研究報告成果,經濟部水利署水利規劃試驗所,台中,民國九十二年十二月。
[37] 張吉佐、陳逸駿、嚴世傑、蔡宜璋,「台灣地區中北部卵礫石層工程性質及施工探討」,地工技術,第55期,35-46頁,1996。