跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張志謙
Chih-Chien Chang
論文名稱: 利用系集重新定位法改善颱風路徑預報-2011年南瑪都颱風個案研究
Application of mean recentering scheme to improve the typhoon track forecast. A case study of typhoon Nanmadol(2011)
指導教授: 楊舒芝
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 颱風系集預報系集卡爾曼濾波器系集重新定位法
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在強烈非線性動力發展下,因系集分布可能嚴重偏離高斯分布,使得系集平均未必為真實大氣之最佳估計。因此本研究提出系集重新定位法(MRS)來解決這個問題,並以2011年南瑪都 (Nanmadol) 颱風個案為例,驗證系集重新定位法能否有效改善颱風的路徑預報。
    本研究首先透過TIGGE (THe Observation system Research and Predictability Experiment) 的歐洲氣象中心 (EC) 全球系集預報資料,針對南瑪都颱風初期路徑的預報不確定性進行分析。結果顯示,在EC的系集成員中,預報表現較好的系集其颱風強度均較強、移動速度較快、颱風較大。而南瑪都颱風與塔拉斯颱風之間的鞍型場結構、南瑪都颱風自身外圍環流以及與塔拉斯颱風間的相互作用都是造成南瑪都颱風突然西偏的敏感區域。
    接著將系集重新定位法應用於區域系集預報系統,並分析系集重新定位法對於系集預報的影響。此外,再進一步將此方法應用於系集資料同化系統上,探討能否藉由系集資料同化系統的流場相依 (flow-dependent) 特性使重新定位法的效益正回饋至同化系統中,進而改善系集整體的動力發展及後續預報能力。
    結果顯示,在單純的系集預報系統實驗中,系集重新定位法可成功改善颱風路徑的系集預報,使系集離散度能合理表達預報不確定性。然而,依據動力系統非線性程度的不同,如何選取作為最佳初始場之系集成員對系集重新定位法而言相當重要。而在系集資料同化系統實驗中,因颱風同化初期洋面觀測資料不足與初始颱風結構不完整,原本的系集資料同化系統無法有效地建立合理的背景誤差結構。但透過系集重新定位法,整體系集得以合理發展,進而獲得較正確的背景誤差結構。如此不僅能改善同化結果,也將對整體預報產生正回饋。此外,本研究建議,挑選數個較好的系集成員,以其平均場當作最佳初始場,對系集的改善將更為顯著。


    Ensemble mean is used to represent the best estimation of nature state and the deviation from the mean are used to approximate the forecast uncertainties. However, when dealing with the strong nonlinear dynamics, the ensemble mean and its evolution may not be as reliable as we hope. Thus, we try to solve this problem through the mean recentering scheme (MRS) with the typhoon Nanmadol (2011) case study.
    This research consists of two parts. In the first part, we examine the track forecast uncertainties of Typhoon Nanmadol (2011) by the EC global ensemble prediction system from TIGGE database. The result from Good Group and Poor Group comparison indicates that the TCs in Good Group are stronger, moving faster and with larger TC size. In the sensitivity region experiment, we found that the saddle field between Typhoon Nanmadol and Typhoon Talas, the outer circulation of Typhoon Nanmadol and the interaction between Typhoon Nanmadol and Typhoon Talas are the sensitivity region for Typhoon Nanmadol’s sudden recurvature.
    The second part is to examine the ability of mean recentering scheme with ensemble forecast system (EPS) and ensemble data assimilation system (EDAS). For the EPS, we hope MRS is able to improve the initial distribution of ensemble members so that the ensemble might keep the suitable distribution during its evolution. With the flow-dependent characteristics, we expect the EDAS could retain the improved ensemble information to ameliorate the ensemble dynamic evolution and prediction skill.
    The results of EPS experiment show that MRS is capable of improving the TC track forecast and its ensemble spread can represent the forecast uncertainties reasonable. However, how to select the best member is critical for MRS. In the EDAS experiment, due to the lack of observation and incomplete TC structure of initial filed, it is extremely difficult to establish an accurate background error covariance in time. Nevertheless, with the MRS, we can estimate a more reasonable background error covariance and the better information would be carried by EDAS to the next analysis time to improve entire EDAS. Also, using the top members’ average as the best member provides a better result.

    摘要 iv Abstract vi 致謝 viii 目錄 ix 圖表目錄 xi 第一章 前言 1 1.1. 背景及文獻回顧 1 1.2. 研究動機 4 第二章 個案介紹 7 2.1. 颱風概述 7 2.2. 路徑預報不確定性分析 8 2.2.1. TIGGE ECMWF 系集分析 9 2.2.2. 颱風轉向敏感區域分析 12 第三章 研究方法與實驗設定 15 3.1. 數值模式 15 3.2. 資料同化系統 15 3.2.1. 系集卡爾曼濾波器 (Ensemble Kalman Filter, EnKF) 16 3.2.2. 局地化系集轉換卡爾曼濾波器 (Local Ensemble Transform Kalman Filter, LETKF) 18 3.2.3. 協方差局地化 (Covariance Localization) 20 3.2.4. 協方差擴張 (covariance inflation) 21 3.3. 系集重新定位法 (Mean Recentering Scheme, MRS) 22 3.4. 模式與實驗設定 23 第四章 系集預報系統實驗 25 4.1. 路徑預報誤差 25 4.2. 系集離散程度 26 4.3. 系集重新定位法與權重平均比較 28 4.4. 小結 29 第五章 系集資料同化預報實驗 31 5.1. 最佳系集選取實驗 31 5.1.1. 路徑預報誤差結果 32 5.1.2. 系集離散程度比較 35 5.2. 誤差結構比較 36 5.2.1. MRS_DA24b 分析 36 5.2.2. DA_CNT、MRS_DA24a、MRS_DA24b誤差結構比較 37 5.3. 小結 38 第六章 結論與未來展望 40 6.1. 結論 40 6.2. 未來展望 42 第七章 參考文獻 44 附圖 52

    Aberson, S. D., 2001: The Ensemble of Tropical Cyclone Track Forecasting Models in the
    North Atlantic Basin (1976–2000). Bull. Amer. Meteor. Soc., 82, 1895–1904.
    Anderson, J. L., S. L. Anderson, 1999: A Monte Carlo Implementation of the Nonlinear
    Filtering Problem to Produce Ensemble Assimilations and Forecasts. Mon. Wea.
    Rev., 127, 2741–2758.
    Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon.
    Wea. Rev., 129, 2884–2903.
    Barker, D. M., W. Huang, Y-R. Guo, A. J. Bourgeois, Q. N. Xiao, 2004: A Three-Dimensional
    Variational Data Assimilation System for MM5: Implementation and Initial Results. Mon.
    Wea. Rev., 132, 897–914.
    Bishop, C. H., B. J. Etherton, S. J. Majumdar, 2001: Adaptive Sampling with the Ensemble
    Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129, 420–436.
    Bourke, W., R. Buizza, M. Naughton, 2004: Performance of the ECMWF and the BoM
    Ensemble Prediction Systems in the Southern Hemisphere. Mon. Wea. Rev., 132,
    2338–2357.
    Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble
    (TIGGE). Bull. Amer. Meteor. Soc., 91, 1059–1072.
    Brennan, M. J., S. J. Majumdar, 2011: An Examination of Model Track Forecast Errors for
    Hurricane Ike (2008) in the Gulf of Mexico. Wea. Forecasting, 26, 848–867.
    Buckingham, C. , T. Marchok, I. Ginis, L. Rothstein and D. Rowe,2010:Short- and
    Medium-Range Prediction of Tropical and Transitioning Cyclone Track within the NCEP
    Global Ensemble Forecasting System, Wea. Forecasting, 25, 736-754.
    Buizza, R., T. N. Palmer, 1995: The Singular-Vector Structure of the Atmospheric Global
    Circulation. J. Atmos. Sci., 52, 1434–1456.
    Buizza, R., 1997: Potential Forecast Skill of Ensemble Prediction and Spread and Skill
    Distributions of the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 125,
    99–119.
    Buizza R., M. Miller, T. N. Palmer, 1999: Stochastic representation of model uncertainties in
    the ECMwF EPS. Q. J. R. Meteo. Soc., 125, 2887-2908.
    Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, M. Wei, 2005: A Comparison of
    the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Wea. Rev.,
    133, 1076–1097.
    Burgers, G., P. J. van Leeuwen, and Evensen, 1998: Analysis scheme in the ensemble Kalman
    filter. Mon. Wea. Rev., 126, 1719-1724.
    Chan, J. C. L., W. M. Gray, 1982: Tropical Cyclone Movement and Surrounding Flow
    Relationships. Mon. Wea. Rev., 110, 1354–1374.
    Chen, T.-C., S.-Y. Wang, M.-C. Yen, A. J. Clark, 2009a: Impact of the Intraseasonal
    Variability of the Western North Pacific Large-Scale Circulation on Tropical Cyclone
    Tracks. Wea. Forecasting, 24, 646–666.
    Chen, J.-H., M. S. Peng, C. A. Reynolds, C.-C. Wu, 2009b: Interpretation of Tropical Cyclone
    Forecast Sensitivity from the Singular Vector Perspective. J. Atmos. Sci., 66, 3383–3400.
    Chen, S.-G., C.-C. Wu, J.-H. Chen, and K.-H. Chou, 2011: Validation and interpretation of
    Adjoint - Derived Sensitivity Steering Vector as targeted observation guidance. Mon.
    Wea. Rev., 139, 1608-1625.
    Chou, M.-D., 1992: A Solar Radiation Model for Use in Climate Studies. J. Atmos. Sci., 49,
    762–772.
    Du, J., S. L. Mullen, F. Sanders, 1997: Short-Range Ensemble Forecasting of Quantitative
    Precipitation. Mon. Wea. Rev., 125, 2427–2459.
    Du, J., B. Zhou, 2011: A Dynamical Performance-Ranking Method for Predicting Individual
    Ensemble Member Performance and Its Application to Ensemble Averaging. Mon. Wea.
    Rev., 139, 3284–3303.
    Eckel, F. Anthony, M. K. Walters, 1998: Calibrated Probabilistic Quantitative Precipitation
    Forecasts Based on the MRF Ensemble. Wea. Forecasting, 13, 1132–1147.
    Elsberry, R. L., L. E. Carr, 2000: Consensus of Dynamical Tropical Cyclone Track
    Forecasts—Errors versus Spread. Mon. Wea. Rev., 128, 4131–4138.
    Elsberry, R. L., 2007: Advances in tropical cyclone motion prediction and recommendations
    for the future. Bull. World Meteor. Organiz., 131-134.
    Epstein, E. S., 1969 : Stochastic Dynamics Prediction. Tellus, 21, 739-759.
    Evensen, G., 1994: Sequential data assimilation with a non-linear quasi-geostrophic model
    using Monte Carlo methods to forecast error statistic. J. Geophys Res., 99, 143-162
    Froude, L. S. R., L. Bengtsson, K. I. Hodges, 2007: The Prediction of Extratropical Storm
    Tracks by the ECMWF and NCEP Ensemble Prediction Systems. Mon. Wea. Rev., 135, 2545–2567.
    Froude, L. S. R., 2010: TIGGE: Comparison of the Prediction of Northern Hemisphere
    Extratropical Cyclones by Different Ensemble Prediction Systems. Wea. Forecasting,
    25, 819–836.
    George, J. E., W. M. Gray, 1977: Tropical Cyclone Recurvature and Nonrecurvature as Related to Surrounding Wind-Height Fields. J. Appl. Meteor., 16, 34–42.
    Goerss, J. S., 2000: Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical
    Models. Mon. Wea. Rev., 128, 1187–1193.
    Goerss, J. S., C. R. Sampson, J. M. Gross, 2004: A History of Western North Pacific Tropical
    Cyclone Track Forecast Skill. Wea. Forecasting, 19, 633–638.
    Goerss, J. S., 2007: Prediction of Consensus Tropical Cyclone Track Forecast Error. Mon.
    Wea. Rev., 135, 1985–1993.
    Greybush, S. J., S. E. Haupt, G. S. Young, 2008: The Regime Dependence of Optimally
    Weighted Ensemble Model Consensus Forecasts of Surface Temperature. Wea.
    Forecasting, 23, 1146–1161.
    Hamill, T. M., J. S. Whitaker, S. L. Mullen, 2006: Reforecasts: An Important Dataset for
    Improving Weather Predictions. Bull. Amer. Meteor. Soc., 87, 33–46.
    Harr, P. A., R. L. Elsberry, 1991: Tropical Cyclone Track Characteristics as a Function of
    Large-Scale Circulation Anomalies. Mon. Wea. Rev., 119, 1448–1468.
    Harr, P. A., R. L. Elsberry, 1995: Large-Scale Circulation Variability over the Tropical
    Western North Pacific. Part I: Spatial Patterns and Tropical Cyclone Characteristics.
    Mon. Wea. Rev., 123, 1225–1246.
    Hoffman, R. N. and E. Kalnay, 1983: Lagged average forecasting, an alternative to Monte
    Carlo forecasting. Tellus A, 35A, 100–118.
    Holland, G. J., 1984: Tropical Cyclone Motion. A Comparison of Theory and Observation. J.
    Atmos. Sci., 41, 68–75.
    Holland, G. J., Y. Wang, 1995: Baroclinic Dynamics of Simulated Tropical Cyclone
    Recurvature. J. Atmos. Sci., 52, 410–426.
    Hong, S.-Y., H.-L. Pan, 1996: Nonlocal Boundary Layer Vertical Diffusion in a
    Medium-Range Forecast Model. Mon. Wea. Rev., 124, 2322–2339.
    Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, H. L. Mitchell, 1996: A System
    Simulation Approach to Ensemble Prediction. Mon. Wea. Rev., 124, 1225–1242.
    Hunt, E. J. K., and I,Szunyogh, 2007:Efficient data assimilation for spatiotemporal chaos: A
    local ensemble transform Kalman filter. Physica D, 230,112-126.
    Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. J. Appl.
    Meteor., 43, 170–181.
    Kalman, R.E.,1960: A new approach to linear filtering and prediction problems.
    Trans. ASME, Series D, J. Basic Eng., 82, 35-45.
    Knaff, J. A., 2009: Revisiting the maximum intensity of recurving tropical cyclones.
    Int. J. Climatol., 29, 827-837.
    Leith, C. E., 1974: Theoretical Skill of Monte Carlo Forecasts. Mon. Wea. Rev. 102, 409-418.
    Lorenz, E. N. 1963: Deterministic Nonperiodic Flow. J. Atmos. Sci.,20,130-142.
    Lorenz, E. N. 1965: A Study of the Predictability of a 28-Variable Atmospheric Model.
    Tells,17 321-333.
    Majumdar, S. J., S. -G. Chen, and C.-C. Wu, 2011: Characteristics of Ensemble Transform
    Kalman Filter adaptive sampling guidance for tropical cyclones. Q. J. R. Meteo. Soc.,
    137, 503-520.
    McBride, J. L., G. J. Holland, 1987: Tropical-Cyclone Forecasting: A Worldwide Summary of
    Techniques and Verification Statistics. Bull. Amer. Meteor. Soc., 68, 1230–1238.
    Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly
    nonlinear dynamical systems., J. Atmos. Sci., 51, 1037-1056.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative
    transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the
    longwave, J. Geophys. Res., 102, 16663–16682.
    Molteni, F., R. Buizza, , R. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble
    Prediction System: methodology and validation. Q. J. R. Meteo. Soc., 122, 73-119.
    Montani, A., R. Buizza, and A. Thorpe, 1996: Singular vector calculations for cases of
    cyclogenesis in the North Atlantic storm-track. Proceedings of the 7thConference on
    mesoscale processes, 9-13 September 1996, University of Reading, Reading,
    UK, pp 617.
    Ott, E., and Coauthors, 2004: Estimating the state of large spatiotemporally chaotic systems,
    Phys. Lett. A,330 , 365-370.
    Palmer, R. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics and
    adaptive observations. J. Atmos. Sci.,55, 633-653.
    Qian, C., F. Zhang, B. W., Green, J. Zhang, X. Zhou, 2013: Probabilistic Evaluation of the
    Dynamics and Prediction of Super Typhoon Megi (2010). Weather and forecasting, accepted subject to revisions.
    Raftery, A. E., T. Gneiting, F. Balabdaoui and M. Polakowski, 2005: Using Bayesian Model
    Averaging to Calibrate Forecast Ensembles. Mon. Wea. Rev., 133, 1155–1174.
    Rappaport, E. N., and Coauthors, 2009: Advances and Challenges at the National Hurricane
    Center. Wea. Forecasting, 24, 395–419.
    Richardson, D., R. Buizza, and R. Hagedorn, 2005: First Workshop on the THORPEX
    Interactive Grand Global Ensemble (TIGGE): Final report. World Meteorological
    Organization WMO/TD-No. 1273, WWRP/THORPEX , 5
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y.
    Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research
    WRF version 3. NCAR Tech. Note TN-475_STR, 125 pp.
    Stensrud, D. J., H. E. Brooks, J. Du, M. S. Tracton and E. Rogers, 1999: Using Ensembles for
    Short-Range Forecasting. Mon. Wea. Rev., 127, 433–446.
    Stensrud, D. J. J.Bao and T. Warner, 2000: Using initial condition and model physics
    perturbation in short-range ensemble simulations of mesoscale connective system.
    Mon. Wea. Rev., 128, 2077-2107
    Tao, W.-K., J. Simpson, M. McCumber, 1989: An Ice-Water Saturation Adjustment.
    Mon. Wea. Rev., 117, 231–235.
    Thompson, P. Duncan, 1977: How to Improve Accuracy by Combining Independent
    Forecasts. Mon. Wea. Rev., 105, 228–229.
    Torn, R. D., G. J. Hakim, C. Snyder, 2006: Boundary Conditions for Limited-Area Ensemble
    Kalman Filters. Mon. Wea. Rev., 134, 2490–2502.
    Torn, R. D., D. Cook, 2013: The Role of Vortex and Environment Errors in Genesis Forecasts
    of Hurricanes Danielle and Karl (2010). Mon. Wea. Rev., 141, 232–251.
    Toth, Z., E. Kalnay, 1993: Ensemble Forecasting at NMC: The Generation of Perturbations.
    Bull. Amer. Meteor. Soc., 74, 2317–2330.
    Toth, Z., E. Kalnay, 1997: Ensemble Forecasting at NCEP and the Breeding Method. Mon.
    Wea. Rev., 125, 3297–3319.
    Warner, T. T., R. A. Peterson, R. E. Treadon, 1997: A Tutorial on Lateral Boundary Conditions
    as a Basic and Potentially Serious Limitation to Regional Numerical Weather Prediction.
    Bull. Amer. Meteor. Soc., 78, 2599–2617.
    Whitaker, J. S., T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed
    Observations. Mon. Wea. Rev., 130, 1913–1924.
    Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007a: Targeted observations of tropical
    cyclones based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64,
    2611-2626.
    Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007b: The
    impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Weather and
    Forecasting, 22, 1157-1176.
    Wu C.-C., S.-G. Chen, J.-H. Chen, K.-H. Chou, and P.-H. Lin, 2009a: Interaction of Typhoon
    Shanshan (2006) with the mid-latitude trough from both Adjoint-Derived Sensitivity
    Steering Vector and potential vorticity perspectives. Mon. Wea. Rev., 137, 852-862.
    Wu, C.-C., J.-H. Chen, S. J. Majumdar, M. S. Peng, C. A. Reynolds, S. D. Aberson, R. Buizza, M. Yamaguchi, S.-G. Chen, T. Nakazawa , and K.-H. Chou, 2009b: Intercomparison of
    targeted observation guidance for tropical cyclones in the North western Pacific. Mon.
    Wea. Rev., 137, 2471-2492.
    Yang S-C, E. Kalnay and T. Miyoshi, 2012: Accelerating the EnKF Spinup for Typhoon
    Assimilation and Prediction, Wea. Forecasting, 27, 878–897.
    Yang, S.-C., K.-J. Lin, T. Miyoshi, and E. Kalnay, 2013: Improving the spin-up of regional EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus, A, in press.
    Zhang, Z., T. N. Krishnamurti, 1997: Ensemble Forecasting of Hurricane Tracks. Bull. Amer.
    Meteor. Soc., 78, 2785–2795.
    Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J.
    Atmos. Sci., 66, 1944-1961.
    Zhang, W., Y. Leung, J. C. L. Chan, 2013: The Analysis of Tropical Cyclone Tracks in the
    Western North Pacific through Data Mining. Part I: Tropical Cyclone Recurvature.
    J. Appl. Meteor. Climatol., 52, 1394–1416.

    QR CODE
    :::