| 研究生: |
薛震 Zhen Xue |
|---|---|
| 論文名稱: |
藍寶石基板側邊效應對藍/白光光形的影響 Sidewall Effect on the Blue/White Light Pattern of Sapphire-based LEDs |
| 指導教授: |
孫慶成
Ching-Cherng Sun 楊宗勳 Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 藍寶石基板型發光二極體晶粒 、光形分佈 、白光發光二極體 、光學模型 |
| 外文關鍵詞: | Sapphire-based LED Chip, Light Pattern, White LED, Optical Model |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討並分析藍寶石基板型發光二極體晶粒的側邊發光效應對於其藍/白光光形的影響,利用ASAP光學模擬軟體建立藍寶石基板型之發光二極體晶粒的光源模型,在該光源模型得到的模擬之藍光光形與實驗中裸晶或加半球透鏡下的量測藍光光形基本匹配的基礎上,結合孫慶成教授所領導之固態照明實驗室所提出之螢光粉模型建立流程,以YAG螢光粉為材料,首先在模擬中建立該YAG螢光粉之螢光粉模型,接著以模擬得到之加半球透鏡下的藍光光形作為晶片與螢光粉接觸面之出光光形,分別追跡藍/黃光在半球型封裝體下的光形分佈,從而得到白光光形之模擬結果,並與實驗之白光光形相比較,通過分析實驗與模擬的差異性,最終選擇在保持各個出光面光形不變的前提下,額外改變各個出光面所占的能量比重的方式,調整晶片表面的出光光形並獲得與實驗結果基本一致的模擬結果。藉由該光源模型的開發以及其在螢光粉封裝之白光發光二極管中的表現,可用於藍寶石基板型發光二極體晶粒在白光LED封裝中的封裝效率與色彩表現的優化。
In this thesis, we analyzed the sidewall effect of the sapphire-based LED on the light pattern both blue light and white light. By using the ASAP software, we built up the light source model of sapphire-based LED in the case of the highly matched on the light pattern both bare LED and LED with lens. On the basis of the phosphor optical models developed in the solid-state lighting laboratory whose supervisor is Dr. Ching-Cherng Sun, yellow phosphor has been well established. We regarded the light pattern recorded from light source model of LED with lens as the emitting surface to trace the blue light and the yellow light of the LED with phosphor and the LED with phosphor and silicone lens. Comparing the white light pattern of experiment and simulation, we tried to adjust the light pattern of the emitting surface by introducing the weighting coefficient to change the power percentage of each emitting surface based on the same light pattern of each surface. In this case, we finally obtained a similar white light pattern of the simulation as the experiment. Due to the model of white LEDs established, we could develop the package efficiency and the optical performance based on sapphire-based LED.
[1] M. Josephson, Edison: A Biography (McGraw-Hill, New York, 1959).
[2] H. J. Round, “A note on carborundum,” Electrical World 49, 309-310 (1907).
[3] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid State Lighting (John Wiley & Sons, New York, 2002).
[4] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353-355 (1986).
[5] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/a-Al2O3 heterepitaxial growth by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
[6] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[7] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys. 76, 8180-8191 (1994).
[8] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34, L1332-L1335 (1995).
[9] P. Waide and S. Tanishima, Light’s Labour’s Lost: Policies for Energy-Efficient Lighting (International Energy Agency, Paris, 2006).
[10] 孫慶成,2009固態照明研討會,國立中央大學,中華民國九十八年。
[11] J. Y. Tsao, An OIDA Technology Roadmap Update 2002 (Nov. 2002), http://www.netl.doe.gov/ssl/workshop/Report%20led%20November%202002a_1.pdf.
[12] LED inside, http://www.ledinside.com.tw/node/9288/.
[13] Cree Inc., http://www.cree.com/News-and-Events/Cree-News/Press-Releases/20 14/March/300LPW-LED-barrier.
[14] LED inside, http://www.ledinside.com.tw/knowledge/20090909-8979.html.
[15] European commission, http://ec.europa.eu/news/energy/090901_en.htm.
[16] Australian customs notice no. 2009/04, http://www.customs.gov.au/webdata/ resources/notices/acn0904.pdf.
[17] Cree Inc., http://www.cree.com/~/media/Files/Cree/LED%20Components%20 and%20Modules/XLamp/Data%20and%20Binning/XLampXTE.pdf.
[18] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Top. Quantum Electron. 8, 310-320 (2002).
[19] 張育譽,雙螢光粉光學模型之研究及其演色性之評估,國立中央大學光電科學與工程學系博士論文,中華民國一百零四年。
[20] S. Muthu, “Controlling method and system for RGB based LED luminary,” United States Patent, US 6507159 (2003).
[21] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-338 (2002).
[22] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United State Patent, US 5998925 (1999).
[23] A. A. Setlur, A. M. Srivastava, H.A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[24] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
[25] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, and N. Hirosaki, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).
[26] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
[27] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[28] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670-6676 (2007).
[29] 邱志煜,白光 LED 空間色偏分佈之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
[30] 蔡尚佑,LED 晶片微結構對光萃取效率及指向性之模擬與分析,國立中央大學光電科學與工程學系碩士論文,中華民國九十八年。
[31] D. A. Neamen, Microelectronics Circuit Analysis and Design (McGraw-Hill, New York, 2007).
[32] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2007).
[33] E. F. Schubert, Light Emitting Diode (Cambridge University Press, Cambridge, 2003).
[34] 陳隆見,發光二極體之原理與製程,全華圖書股份有限公司,台北縣,中華民國一百年。
[35] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華圖書股份有限公司,台北市,中華民國九十五年。
[36] S. Shionuya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, Boca Raton, 1999).
[37] YAG Y479, 弘大貿易股份有限公司,http://hung-ta-co.com/web2013 /eBook.aspx?Lang=TW&ID=87&from=%2fweb2013%2ftw%2fproduct_no.aspx%3fclassid%3d13.
[38] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
[39] International Commission on Illumination, Commission International de l’Eclairage Proceedings (Cambridge University Press, Cambridge, 1931).
[40] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley and Sons, nc., Danvers, 1982).
[41] The Colour & Vision Research Laboratory, http://www.cvrl.org/.
[42] International Commission on Illumination, CIE 15: Technical Report: Colorimetry, 3rd ed. (CIE, Vienna, 2004).
[43] Mired, Wikipedia website, http://en.wikipedia.org/wiki/Mired.
[44] I. G. PRIEST, “A proposed scale for use in specifying the chromaticity of incandescent illuminants and various phases of daylight,” J. Opt. Soc. Am. A 23, 41-45 (1933).
[45] Fresnel Equation, Wikipedia website, http://en.wikipedia.org/wiki/Fresnel_ equations.
[46] 何信穎,白光 LED 之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。
[47] 紀葦世,高效能 YAG 螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
[48] 陳靜儀,矽酸鹽螢光粉用於白光 LED 之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[49] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060–20066 (2008).
[50] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[51] Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[52] Breault Research Organization, Inc., http://www.breault.com/.
[53] N. T. Tran, J. P. You, F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Techno. 27, 5145-5150 (2009).
[54] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Techno. Lett. 23, 552-554 (2011).
[55] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[56] R. Hua, X. Luo, H. Fenga, and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode,” J. Lumines. 132, 1252-1256 (2012).
[57] J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).
[58] T. H. Yang, C. Y. Chen, Y. Y. Chang, B. Glorieux, Y. N. Peng, H. X. Chen, T. Y. Chung, T. X. Lee, and C. C. Sun, “Precise simulation of spectrum for green emitting phosphor pumped by a blue LED die,” IEEE Photon. J. 6, 8400510 (2014).
[59] I. Moreno, D. Bermúdez, and M. Avendaño-Alejo, “Lighting-emitting diode spherical packages: an equation for the light transmission efficiency,” Appl. Opt. 49, 12-20 (2010).