| 研究生: |
魏子軒 Tzu-Hsuan Wei |
|---|---|
| 論文名稱: |
高頻譜影像物質含量估計運用加權最小 Weighted Least Square Methods for MaterialAbundance Estimation in Hyperspectral Image |
| 指導教授: |
范國清
Kuo-Chin Fan 任玄 Hsuan Ren |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 物質含量估計 、次像素目標物偵測 、線性頻譜混合分析 、高頻譜影像 、最小平方法 |
| 外文關鍵詞: | material abundance estimation, subpixel target detection, hyperspectral image, least squares method, linear spectral mixture analysis |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,高頻譜影像已普遍應用於遙測影像之目標物偵測,其優點在於接近連續的數百個頻譜波段可以提供較多高頻譜解析度以解決多頻譜影像無法辨認出之物質。然而在高頻譜影像中感興趣之目標物尺寸一般皆小於地面解析度,在這個情況下,便必須使用次像素目標偵測法。
線性頻譜混合分析是一個常用於高頻譜影像中次像素目標物偵測與物質分類之技術,而最小平方誤差方法則為一個普遍用於解決物質含量估計之線性頻譜混合問題。在本篇論文中將介紹一個一般化之最小平方法,加權最小平方法。當使用不同的加權矩陣時,即可推導出不同的偵測或分類演算法。我們將證明過去一些已發表之方法,皆可重寫為加權最小平方法的形式。為了產生更準確之物質含量,我們接著結合含量總合為1與含量不為負的兩個限制條件,成為完全限制加權最小平方法。而為了更進一步應用所設計之演算法在沒有任何物質資訊的影像中,我們亦加入一個以最小平方誤差為基礎之非監督式方法,將完全限制加權最小平方法延伸為一非監督式演算法。最後,我們比較幾個高頻譜影像雜訊估計之方法,以提高本方法之偵測效能。
在本論文之電腦模擬與真實高頻譜影像實驗中,我們發現經過白化雜訊處理後之最小平方法偵測結果較好,另外亦可顯現出完全限制加權最小平方法在物質含量估計之效能也較好。
Recently, hyperspectral images are widely used for target detection in remotely sensed imagery. They take advantage of hundreds of contiguous spectral channels to uncover materials that usually cannot be resolved by multispectal images. However, the ground resolution in hyperspectral imagery is generally larger than the size of targets of interest, under this circumstance target detection must be carried out at subpixel level.
Linear spectral mixture analysis (LSMA) is a widely used technique for subpixel target detection and material classification in hyperspectral image, and least squares unmixing methods are widely used to solve linear mixture problems for material abundance estimation. In this thesis, a weighted least squares (WLS) method is introduced as a generalization. When different weight matrix is applied, a certain detector or classifier will be resulted. Several previous proposed methods have been proven to be versions of WLS methods. For accurate abundance fraction estimation, a fully constrained weighted least squares (FCWLS) approach is developed by combining sum-to-one and nonnegativity constraints. In order to further apply the designed algorithm to unknown image scenes, an unsupervised least squares method is also proposed. Furthermore, several noise estimation methods are introduced, and we also compare the performance of target detection capability.
A serious of computer simulation and real hyperspectral image experiments were conducted in this thesis. The experimental results showed that the noise whitening least squares method in target detection and FCWLS approach in abundance fraction estimation have better performance.
[1] R.O. Duda and P.E. Hart, Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, 1973.
[2] L.L. Scharf, Statical Signal Processing, ch.9,
Addison-Wesley, 1991.
[3] R.A. Schowengerdt, Remote Sensing: Models and Methods for
Image Processing, 2nd ed., Academic Press, 1997,
pp.470-471.
[4] D. E. Sabol, J. B. Adams, and M. O. Smith,“Quantitative
sub-pixel spectral detection of targets in multispectral
images,"J. Geophys. Res., vol.97, pp.2659–2672, 1992.
[5] J. B. Adams, M. O. Smith, and A. R. Gillespie,“Image
spectroscopy: Interpretation based on spectral mixture
analysis,"in Remote Geochemical Analysis: Elemental and
Mineralogical Composition, C. M. Pieters and P. A. Englert,
Eds. Cambridge, U.K.: Cambridge Univ. Press, 1993,
pp.145–166.
[6] M. O. Smith, J. B. Adams, and D. E. Sabol,“Spectral
mixture analysis-new strategies for the analysis of
multispectral data,"in Image Spectroscopy—A Tool for
Environmental Observations, J. Hill and J. Mergier, Eds.
Amsterdam, The Netherlands: Kluwer, 1994, pp.125–143.
[7] C. Harsanyi and C.-I Chang,“Hyperspectral image
classification and dimensionality reduction: an
orthogonal subspace projection approach,"IEEE
Transactions on Geoscience and Remote Sensing, vol.32,
no.4, pp.779-785, July 1994.
[8] J. Bowels, P. Palmadesso, J. Antoniades, M. Baumback, and
L.J. Rickard,“Uses of filter vectors in hyperspectral
data analysis,"Proc. SPIE, vol.2553, pp.148-157, 1995.
[9] H. Ren and C.-I Chang,“A Target-constrained
interference-minimized approach to subpixel detection
for hyperspectral images,"Optical Engineering, vol.39,
no.12, pp.3138-3145, December 2000.
[10] C.-F. T. Tang, C.-I Chang, and Y. J. Chen,“A minimum
variance distortionless response beamformer with
systolic array implementation,"in Proc. Int. Conf.
Signal Processing'90, Beijing, Oct. 22–26, 1990,
pp.1109–1112.
[11] Q. Du and C.-I Changn,“Linear constrained distance-based
discriminant analysis for hyperspectral images
classification,"Pattern Recognition, vol.34, no.2,
pp.361-373,2001.
[12] D. C. Heinz and C.-I Chang,“Fully constrained least
squares linear spectral mixture analysis method for
material quantification in hyperspectral imagery,"IEEE
Transactions on Geoscience and Remote Sensing, vol.39,
no.3, pp.529-545, March 2001.
[13] J. J. Settle and N. A. Drake,“Linear mixing and estimation
of ground cover proportions,"Int. J. Remote Sensing,
vol.14, no.6, pp.1159–1177, 1993.
[14] E. A. Ashton and A. Schaum,“Algorithms for the detection
of sub-pixel targets in multispectral imagery,"
Photogramm. Eng. Remote Sensing, pp.723–731, July 1998.
[15] C. L. Lawson and R. J. Hanson,“Solving least squares
problems,"in Proc. Classics in Applied Mathematics,
Philadelphia, PA, 1995.
[16] R. Bro and S. D. Jong,“A fast nonnegativity-constrained
least squares algorithm,"J. Chemom., vol.11,
pp.393–401, 1997.
[17] C. Brumbley and C.-I Chang,“An unsupervised vector
quantization-based target signature subspace projection
approach to classification and detection in unknown
background,"Pattern Recognition, vol.32, no.7,
pp.1161-1174, July 1999.
[18] H. Ren and C.-I Chang,“Automatic Spectral Target
Recognition in Hyperspectral Imagery," IEEE
Transactions on Aerospace and Electronic Systems, vol.39,
no.4, pp.1232-1249, October 2003.
[19] Q. Du,“Noise estimation for remote sensing image data
analysis,"Imaging Spectrometry IX. Edited by Shen,
Sylvia S.; Lewis, Paul E. Proceedings of the SPIE,
vol.5159, pp. 246-254, 2003.
[20] C.-I Chang and D. C. Heinz,“Constrained subpixel target
detection for remotely sensed imagery," IEEE
Transactions on Geoscience and Remote Sensing, vol.38,
no.3, pp.1144-1159, May 2000.
[21] H. Ren, T.H. Wei, and C.H. Hung,“Comparison of weighted
least-square approaches for remotely sensed imagery," in
Proc. IPPR Conf. on CVGIP 2004, Hwalien, Taiwan, August
2004.
[22] C.-I Chang,“Further results on relationship between
spectral unmixing and subspace projection," IEEE
Transactions on Geoscience and Remote Sensing, vol.36,
no.3, pp.1030-1032, May 1998.
[23] C.-I Chang,“Orthogonal subspace projection (OSP)
revisited:a comprehensive study and analysis,"IEEE
Transactions on Geoscience and Remote Sensing, vol.43,
no.3, pp.502-518, March 2005.
[24] Q.Du and H. Ren,“Performance analysis for CEM and OSP,"
Processings of SPIE''s 16th International Symp. On
Aerosense, Orlando, Florida, April 1-5, 2002.
[25] T. Yamamoto, H. Hanaizumi and S. Chino,“A change
detection method for remotely sensed multispectral and
multitemporal images using 3-D segmentation,"IEEE
Transactions on Geoscience and Remote Sensing, vol.39,
no.5, pp.976-985, 2001.
[26] R. E. Roger,“Principal components transform with sample,
automatic noise adjustment,"Int. J. Remote Sensing,
vol.17 no.14, pp.2719-2727, 1996.
[27] R. E. Roger and J. F. Arnold,“Reliably estimating the
noise in AVIRIS hyperspectral imagers," Int. J. Remote
Sensing, vol.17 no.10, pp.1951-1962, 1996.