| 研究生: |
范智文 Zhi-Wen Fan |
|---|---|
| 論文名稱: |
金屬粉末射出成型三維毛細吸附脫脂觀察與分析 |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 毛細力 、脫脂百分比 、空孔度 、毛細吸附脫脂 、金屬粉末射出成形 |
| 外文關鍵詞: | metal powder injection molding, porosity, wick debinding, debinding percentage, capillary force |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在金屬粉末射出成形過程中,脫脂的步驟影響很大,主要原因是在於其過程極為耗時,和脫脂不當會導致成品易產生損壞。故為限制整個金屬射出成型產能的主要關鍵。
本研究以三維毛細吸附脫脂實驗為主使用金屬粉末而非鋼珠模擬以接近實際脫脂情形;做一吸附實驗,以空孔度、胚體厚度、脫脂溫度、不同吸附材粉末粒徑、不同胚體粉末粒徑為變因,探討這些變因對脫脂百分比的影響性,得到配合小胚體厚度和吸附材粉末粒徑要小,胚體粉末粒徑要大或是高胚體空孔度,以及適當的脫脂溫度可得到較快的脫脂百分比以及脫脂過程中無因次參數的變化加以分析,可知毛細力為主導吸附脫脂的主要力量,其次推導出一套符合本實驗中二維吸附部分的數值模擬,以探討理想的狀況下,胚體的脫脂百分比與脫脂時間之間的相互關係。兩者相互比對,可明白在脫脂過程中,理論模擬與實驗操作的差異性。
Among the MIM processes, debinding is the most important and time-consuming step. Failing in this key process always leads to the overall failure of the MIM product. Therefore, it is the key point of the limiting the production rate of the MIM process.
To analyze the three dimension of wick debinding process, the influence of five different factors (porosity, compact height, debinding temperature, wick powder size, compact powder size) on the final debinding percentage is investigated. Results show that high porosity compact, small wick powder size, large compact powder size, and appropriate debinding temperature can increase the debinding percentage. By the dimensionless analysis of the parameters in debinding process, the capillary force is found to be the main driving force in the wick debinding. Furthermore, a mathematic of model is derived to simulate the idealized, two-dimensional debinding process, and the debinding percentage versus debinding time is calculated. The difference between simulation and experiment is compared and analyzed.
參考文獻
1.黃坤祥,“台灣MIM研究動機”,粉末冶金會刊,p.175-179 (1995).
2.陳文信,“金屬粉末射出成型技術”,機械工業雜誌, Vol.154,pp.148-158 (1996)
3.陳文信,“金屬粉末射出成型零件市場”,ITRI, MR-151-C209 材料產業透析(1995).
4.周村裕幸,“金屬粉末射出成型製程”, 粉末冶金會刊,Vol.22, No.1, pp.31-40 (1997).
5.R. M. German and K. F. Hens, S. P. Lin, “Key Issues in Powder Injection Molding,” Ceramic Bulletin., Vol.70, No.8, pp. 1294-1302 (1991).
6.蘇英源,“粉末冶金學”, 全華科技圖書股份有限公司 (2001).
7.劉世騏,“合金增進粉末射出成形鐵鎳基材料之性能”,台灣工業技術學院機械工程研究所碩士論文 (1995).
8.鄒宗漢,“射出成形法中脫脂製程之研究”,台灣大學材料科學與工程學研究所碩士論文 (1991).
9.R. M. German, “Powder Injection Molding,” Metal Powder
Industries Federation., Princetion, NJ, pp.321-346 (1990).
10.J. Woodthorpe, M. J. Edirisinghe and J. R. G. Evans, “Proterties of Ceramic Injection Moulding Formation,” Powder Metal. Sci, Vol.24, No.2, pp.1038-1048 (1989).
11.J. G. Zhang, M. J. Edirisinghe and J. R. G. Evans, “A Catalogue of Ceramic Injection Moulding Defects and Their Causes,” Industrial Ceramics., Vol.9, No.8, pp.72-82(1989).
12.K. S. Hwang and T. H. Tsou, “Thermal Debinding of Powder
Injection oldied Parts : Observation and Mechanisms,” Metallurgical Transaction., Vol.23, No.1, pp.192-277 (1992).
13.R. M. German, “Theory of Thermal Debinding,” Int. J. Powder Metal., Vol.23, No.4, pp.237-245 (1987).
14.B. R. Patterson and C. S. Aria, “Debinding Injection Molding Materials by Melt Wicking,” Journal of Materials Processing Technology., Vol.41, Iss.8, pp.22-24(1989).
15.B. K. Lograsso and R. M. German, “Thermal Debinding of Injection Moldied Powder Compacts,” Powder Metallurgy Internation., Vol.22, No.1, pp.17-22(1990).
16.J. K. Wright and J. R. G. Evans, “Removel of Organic Vehicle from Moulded Ceramic Bodies by Capillary Action,” Ceramics International., Vol.6, No.17, pp.79-87 (1991).
17.R. Vetter, M. J. Sanders, I. Majewska-Glabus, L. Z. Zhuang and J. Duszczyk, “Wick-debinding in Powder Injection Molding,” Powder Metall.,Vol.30, No.1,pp.115-124(1994).
18.R. Vetter, W. R. Horninge, P. J. Vervoort, L. Z. Zhuang, I. Majewska-Glabus, and J. Duszczyk, “Squared Root Wick Debinding Model for Powder Injection Moulding,” Powder Matell.,Vol.37, No.4, pp.265-271(1994).
19.Eric M Summers and Mufit Akinc, “Wick-debinding of Molybdenum-Silicon-Boron Extrudates,” Journal of the American Ceramic Society., Vol38, No.47, Jul, p 1670-1674(2000).
20.K. C. Hsu and G. M. Lo, “Effect of Binder Composition on Rheology of Iron Powder Injection Moulding Feedstocks: Experimental Design,” Powder Metall., Vol.39, No.4, pp.286-290 (1996).
21.K. F. Hens, S. T. Lin, R. M. German and D. Lee, “The effects of Binder on the Mechanical Properties of Carbonyl Iron Products,” Journal of Materials Processing Technology, Iss.8, pp.17-21 (1989).
22.C. C. Chen and L. W. Hourng, “Numerical Simulation of Two-dimensional Wick Debinding in MIM by Body Fitted Finite Element Method,” Powder Metallurgy., ol.42, No.4, pp.313-319
(1999).
23.M. S. Shin and L. W. Hourng, “Numerical Simulation of Capillary-induced Flow in a Powder-embedded Porous Matrix,” Advance Powder Tech., Vol.12, No.4, pp.451-480 (2001).
24.C. Y. Chang, “Numerical Simulation of Two-dimensional Wick Debinding in Metal Powder Injection Molding,” Advanced Powder Technology., Vol.14, No.2, pp.177-194 (2003).
25.Carlos A. Grattoni, Richard A. Dawe, “Anisotropy in Pore Structure of Porous Media,” Powder Technology., Vol.85, pp.143-151(1995).