| 研究生: |
陳彥睿 Yen-Jui Chen |
|---|---|
| 論文名稱: |
深滬港通南北向資金流量與三地股市之關聯性分析 |
| 指導教授: |
高櫻芬
Yin-Feng Gau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系在職專班 Executive Master of Finance |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 深滬港通 、單根檢定 、成交量 、股市關聯性 |
| 外文關鍵詞: | Shenzhen-Shanghai-Hong Kong Stock Connect, single root test, trading volume, stock market correlation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文選取深股通、滬股通以及港股通從2016年12月5日到2020年3月6日南北向的淨買超總交易量,共計2,880筆日資料,與上海證券交易所A股指數、香港恆生指數以及深圳A股指數的前一營業日報酬率以及總成交量進行關聯性分析。本文首先以單根檢定檢驗深股通、滬股通以及港股通的南北向的淨買超總交易量之定態性(stationarity),結果顯示香港對上海北向淨買超、香港對深圳北向淨買超、上海對香港南向淨買超及深圳對香港南向淨買超,所對應的p-value小於0.05,因此我們可以拒絕變數為I(1)數列的虛無假說,確認上述的淨買超總交易量皆為定態數列。我們接著使用多元線性迴歸模型分析南北向資金流量與三地股市報酬率之關聯性,估計結果顯示:(1)以北向(滬股通)的交易面來看,發現香港恆生指數報酬率、上證A股指數成交量、深圳A股指數成交量與滬股通北向淨買超量的迴歸係數最為顯著;(2)以北向(深股通)的交易面來看,發現香港恆生指數報酬率、上證A股指數成交量與深股通北向淨買超量的迴歸係數最為顯著;(3)以南向(港股通)的交易面來看上證A股指數成交量、深圳A股報酬率與港股通(上海對香港)迴歸係數最為顯著;(4)以南向(港股通)的交易面來看上證A股指數成交量、深圳A股指數成交量與港股通(深圳對香港)迴歸係數最為顯著。
This thesis uses the net trading flow of Shenzhen-China Stock Connect, Shanghai-Hong Kong Stock Connect and Hong Kong Stock Connect during the period from December 5, 2016 to March 6, 2020, with a total of 2,880 daily data, and the lagged value of the Index of A shares of Shanghai Stock Exchange, the Hong Kong Hang Seng Index, and the Shenzhen A-share Index to study the association of stock index returns and the trading activities of Stock Connect. Regarding the test of stationarity for series of the net north-south trading volume of Shenzhen Stock Connect, Shanghai Stock Connect and Hong Kong Stock Connect with a single root test. Buy Chao, Shanghai to Hong Kong Net Buy Chao and Shenzhen to Hong Kong Net Buy Chao, we find that p-value is less than 0.05, therefore, we can reject the null hypothesis of I(1) series, and conclude that the above trading flows are stationary. Next, the results of the multiple regression models show that: (1) From the perspective of the north-bound (Shanghai Stock Connect) transaction, the regression coefficients of the Hong Kong Hang Seng Index return, the Shanghai A-share index trading volume, the Shenzhen A-share index trading volume and the Shanghai Stock Connect northbound net buying excess are the most significant; (2) Regarding the north-bound (Shenzhen Stock Connect) trading, the coefficients of Hong Kong Hang Seng Index Return, Shanghai A-share Index Trading Volume and Shenzhen Stock Connect Northbound Net Buying Overweight are the most significant; (3) Regarding the south-bound (Hong Kong Stock Connect) transaction, coefficients of the Shanghai A-share index turnover, Shenzhen A-share return rate and Hong Kong Stock Connect (Shanghai to Hong Kong) are the most significant; (4) Regarding the south-bound (Hong Kong Stock Connect) trading activities, the trading volume of the Shanghai A-share index, coefficients of Shenzhen A-share index and the Shenzhen Stock Connect (Shenzhen to Hong Kong) are the most significant.
英文文獻
Burdekin, R. C., and Siklos, P. L. (2018). Quantifying the impact of the November 2014 Shanghai-Hong Kong stock connect. International review of economics & finance, 57, 156-163.
Bai, Y., and Chow, D. Y. P. (2017). Shanghai-Hong Kong Stock Connect: An analysis of chinese partial stock market liberalization impact on the local and foreign markets. Journal of International Financial Markets, Institutions and Money, 50, 182-203.
Dicky D. A. and Fuller, W. A.(1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431.
Engle, R.F. and Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing, Econometrica,55,2,251-276.
Engsted, T. and Tanggarrd, C. (2004). The comovement of US and UK stock markets, European Financial Management, 10, 4, 593-607.
Granger, C. W. J. and Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics 2, 111-120.
Gerrits, R-J and Yuce, A. (1999). Short-term and long-term links among European and U.S. stock markets, Applied Financial Economics 9,1,1-9.
Huo, R. and Ahmed, A. D. (2017). Return and volatility spillovers effects: Evaluating the impact of Shanghai-Hong Kong Stock Connect. Economic Modelling, 61, 260-272.
Jeon, B. and Chiang, T.(1991).A. system of stock price in world stock exchange:common stochastic trends for 1975-1990, Journal of Economic and Business, 43, 4, 329-338.
Liu, C., Wang, S., and Wei, K. C. (2018). Demand shock, speculative beta, and asset prices: Evidence from the Shanghai-Hong Kong stock connect program. Speculative beta, and asset prices: Evidence from the Shanghai-Hong Kong Stock Connect Program (December 1, 2018).
Said, S. E. and Dickey, D. A. (1985). Hypothesis testing in ARIMA(p, 1, q) models. Journal of the American Statistical Association, 80(390), 369-374.
Xing, L., Xu, K., Zheng, X. (2019). Stock market openness and market quality evidence from the Shanghai-Hong Kong Stock Connect Program, Working Paper.
中文文獻
安娜琳(2007),A股和H股互動關係研究,政治大學金融研究所碩士論文。
朱浩民、譚智中(2016),「滬港通」前後,A股與 H 股折溢價分析,兩岸金融季刊 第四卷第四期。
汪拓冰(2016),滬港通開通對兩岸三地股價與關聯性影響研究,淡江大學財務金融學系碩士班學位論文。
邱振祥(2010),中國A股與香港H股之折溢價實證分析,臺灣大學國際企業管理組碩士論文。
陳榮賢(2016),滬港通對中港股價報酬之影響,正修科技大學金融管理系產業碩士班學位論文。
陳逸虹(2017),深港通開放對深圳股市之異常報酬探討,中正大學財務金融學系碩士班學位論文。
蕭伯特(2015),滬港通對滬股及港股之影響,交通大學財務金融研究所碩士論文。
賴藝文(2016),上海 A 股與 H 股市場從眾行為之探討-以市場極端變化與滬港通期間為例,兩岸金融季刊 第四卷第三期。
譚智中(2015),滬港通前後A股、H股折溢價關係及價格傳遞分析,政治大學金融研究所碩士論文。