| 研究生: |
楊繼賢 Chi-Hsien Yang |
|---|---|
| 論文名稱: |
使用微透鏡陣列之同軸全像儲存系統與其考慮材料紀錄動態範圍之模型建立 Micro Lens-Array Modulated Coaxial Holographic Storage System and Optical Model Considering Recording Dynamics of Material |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 相位疊加法 、體積全像 、同軸 、全像 、儲存 、透鏡陣列 |
| 外文關鍵詞: | VOHIL, Volume hologram, Coaxial, holographic, storage, lens array |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用純量繞射理論與相位疊加法搭配PQ/PMMA材料特性建立了一考慮材料紀錄動態範圍的全像儲存系統光學模型,透過此模型可以模擬不同紀錄能量、時間下的繞射影像,以及讀取時材料位移的位移靈敏度和繞射影像變化。以此模型為基礎,架設一套使用微透鏡陣列相位調製之自動化同軸全像儲存系統,並成功在實驗中利用此系統進行資料的讀寫。
In this thesis, an optical model considering recording dynamics of material PQ/PMMA is proposed based on scalar diffraction theory, VOHIL and characteristic of PQ/PMMA. With this optical model, the diffraction image recorded in different time and energy can be predicted, and also the shift selectivity. Based on the optical model, an automatic coaxial holographic data storage system is built. In experiment, data can successfully be written in and retrieved out from the system.
[1] S. Tucker, “Make room for hot data; offload cold data to the cloud, ” https://www.slideshare.net/DataCore/make-room-for-hot-data-offload-cold-data-to-the-cloud/.
[2] T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55, 09SA06 (2016).
[3] L. Dhar, K. Curtis, and T. Fäche, “Holographic data storage: Coming of age,” Nat. Photonics 2, 403–405 (2008).
[4] M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
[5] E. N. Leith, A. Kozma, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
[6] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” in Proceedings of IEEE 92, 1231–1280 (2004).
[7] H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[8] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
[9] K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[10] S. Kostyshen, “The bridge to big data – nice work if you can get it, ” http://www.k2view.com/blog_post/the-bridge-to-big-data-nice-work-if-you-can-get-it/
[11] K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
[12] R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Opt. express 18, 1091-1098 (2010).
[13] T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38, 748-750 (2013).
[14] J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42, 1377-1380 (2017).
[15] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
[16] H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks, ” Appl. Opt. 33, 3764–3774 (1994).
[17] T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express 14, 3187–3192 (2006).
[18] T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40, 2161–2164 (2015).
[19] C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39, 6891-6894 (2014).
[20] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[21] D. Gabor, “A new Microscopic principle,” Nature 161,777(1948).
[22] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2,393 (1963).
[23] A. Pu and D. Psaltis, in 1997 Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 48–49.
[24] G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A.Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 Gigapixels/in2”, Opt. Lett. 26, 444–446 (2001).
[25] K. Curtis, “Holographic Data Storage,” presented at 2005 Fall Research Review, Center for Magnetic Recording Research, University of California, San Diego, October 26, 2005.
[26] T. Sandhu, “Holographic storage promises 1.6TB per disc by 2011. 300GB on show today,” http://hexus.net/tech/news/storage/8150-holographic-storage-promises-16tb-per-disc-2011-300gb-show-today/.
[27] K. Tanaka, H. Mori, M. Hara, K. Hirooka, A. Fukumoto, and K. Watanabe,“High density recording of 270 Gbits/inch2 in a coaxial holographic storage system,” Tech. Digest of ISOM 2007, MO–D–03.
[28] W. R. Klein, “Theoretical Efficiency of Bragg Devices, ” Proc. IEEE 54, 803 (1966).
[29] 鄭智元,同軸式全像儲存系統記錄介質具有離焦及傾斜之研究,國立中央大學光電科學研究所博士論文,中華民國一百零四年。
[30] H. Kogelnik, “Coupled wave theory for thick hologram gratings, ” Bell Syst. Tech. J. 48, 2909-2947 (1969).
[31] A. Yariv, and P. Yeh, Optical Waves in Crystals, (John Wiley & Sons, New York, 1984).
[32] 鄧敦建,體積全像於光學元件及光儲存之研究,國立中央大學光電科學研究所博士論文,中華民國九十五年。
[33] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, “Volume Diffraction Caculations Using the k-sphere Formulation”, in Holographic data storage, 42-47 (Springer, New York, 2000).
[34] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[35] R. Gallager, “Low Density Parity Check Codes,” IRE Trans. Inform. Theory. 8, 21-28, (1962).
[36] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J. 27, 379-423, 623-656 (1948).
[37] D. J. C. Mackay and R. M. Neal, “Near Shannon Limit Performance of Low Density Parity Check Codes,” Electron. Lett. 32, 1645-1646 (1996).
[38] 黃冠榮,MIMO-OFDM 系統之偵測與低密度同位檢查碼解碼,國立交通大學電信工程研究所碩士論文,中華民國九十五年
[39] Sarah Johnson, "Low - Density Parity - Check Codes from Combinatorial Designs," Doctor of Philosophy, School of Electrical Engineering and Computer Science, The University of Newcastle Callaghan, Australia, 2004
[40] 鄭智元、余業緯、孫慶成 (2014, 03)。〈同軸式全像資訊儲存系統之理論模型〉。科儀新知,198,頁73-84。
[41] Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130-1132 (2010).
[42] S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, M. Furuki, K. Hayashi, Koichi Haga, and Hisae Yoshizawa, “Optical noise reduction by reconstructing positive and negative images from Fourier holograms in coaxial holographic storage systems,” Opt. Lett. 31, 1639-1641 (2006).
[43] K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
[44] Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24, 10412-10423 (2016).
[45] 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電科學研究所博士論文,中華民國九十八年。
[46] S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
[47] 陳柏霖,以PQ衍生物為光敏感劑的感光全像高分子材料,國立交通大學材料科學與工程所碩士論文,中華民國九十四年。
[48] K.Y Hsu, S.H. Lin, Y.N. Hsiao and W.T. Whang, Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage, Opt. Eng. 42, 1390–1396 (2003).
[49] S.H. Lin, Y.N. Hsiao and K.Y Hsu, Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm, J. Opt. A: Pure Appl. Opt. 11, 024012-1-9 (2009).
[50] K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18, 374–382 (2011).
[51] J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, "Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram," Opt. Express 24, 1641-1647 (2016).
[52] C. Li, L. Cao, Q. He and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22, 5017-5028 (2014).
[53] B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers," Proc. SPIE 10233, 10233N (2017).
[54] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Letters 31, 1208–1210 (2006).
[55] T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, K. Kuroda, “What Limits the Storage Density of the Collinear Holographic Memory.” Tech. Digest of ODS2007,TuD1.
[56] C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Optics Express 15, 18111-18118 (2007).
[57] Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Comm. 283, 3895-3900 (2010).