跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳楷璿
Kai-Shiuan Chen
論文名稱: 橫向磁化磁光介質之光學特性研究
Propagating properties of the electromagnetic waves in the transversely magnetized magneto-optical media
指導教授: 欒丕綱
Pi-gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學研究所碩士在職專班
Executive Master of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 70
中文關鍵詞: 磁光介質一維光子晶體
外文關鍵詞: 1D photonic crystal, magneto-optical media
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要討論由 TM 模態的電磁波在橫向磁化磁光介質所組成的光學元件內
    的光學性質,並討論此種介質的介質參數(介電張量與導磁張量)非對角線元
    素數值大小對光學性質的影響。橫向磁化磁光介質的介質參數為一赫米特矩陣
    (Hermitian matrix),利用馬克斯威爾方程組可以計算 TM 模態下的磁場、電場與波
    印亭向量在此種介質內的解析解,經分析發現電場向量運動軌跡是個橢圓形並且躺
    在與波向量平行的平面上。利用電磁場在界面上的連續條件,可解出光從均向性介
    質入射磁光介質或由磁光介質入射均向性介質的反射率與透射率,並且我們證明以
    上兩種情況下均不會有布魯斯特角產生。
    另外我們推導含橫向磁化磁光介質的一維傳遞矩陣法。再根據此傳遞矩陣法計
    算由橫向磁化磁光介質所組成的一維非互易性光子晶體的頻帶結構。分析介電張量
    非對角線元素的數值大小對光子晶頻帶結構的影響,發現其數值愈大非互易性愈
    為明顯,在合適條件下此類光子晶體除了有單向傳播的特性外還有負折射現象。借
    由場圖模擬以平面波、高斯波及點波源入射此種非互易性光子晶體,得以方便觀察
    及討論光在此種元件的行為。在討論負折射現象時發現以點光源入射後,在出射區
    會有成像的行為,進一步探討波源位置與成像位置的關係,結果顯示它初步符合幾
    何光學的關係,不會因為此元件的非互易性而不同。


    We investigate the propagating properties of the electromagnetic waves in the trans-
    versely magnetized magneto-optical (MO) media and the devices composed of MO me-
    dia and isotropic medium. The permittivity tensor and permeability tensor of the MO me-
    dium is a Hermitian matrix, and the equation of magnetic field, electric field and Poyn-
    ting vector of the TM mode can be derive by using Maxwell equations. It is shown that
    the endpoint of the electric field vector sweeps out an ellipse lying on the plane of inci-
    dence. Furthermore, we derive the formulas for evaluating the reflection rate in the cases
    of MO-to- isotropic medium incidence or isotropic-to-MO medium incidence. We also
    prove that there is no Brewster’s angle corresponding to these situations.
    In addition, the transfer matrix for calculating the transmission rate and band struc-
    ture of the one dimensional transversely magnetized magneto-optical photonic crystal
    (MOPC) is derived. From these results, we find that the larger the values of the
    off-diagonal elements of the dielectric tensor, the stronger the spectral asymmetry (non-
    reciprocity) of the MOPCs. The strong spectral asymmetry leads to a number of interest-
    ing phenomena, including one-way transparency and negative refraction. To verify the
    predicted phenomena in MOPC based on band structure analysis, we implement a lot of
    numerical simulations on the steady state magnetic field distribution and time-averaged
    energy-flow density for the cases of plane wave, Gaussian beam and point source waves.
    All the phenomena have been confirmed numerically.

    摘要 I ABSTRACT II 誌謝 III 目次 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 磁光材料概述 1 1-2 光子晶體概述 2 1-3 研究動機與架構 4 第二章 磁光材料光傳播特性 5 2-1 介質內光與波的傳播特性 7 2-1-1 色散關係 7 2-1-2 電場分佈 10 2-1-3 時間平均能流密度 14 2-2 單介面傳播特性 15 2-2-1 反射與透射 16 2-2-2 外反射 21 2-2-3 內反射 23 2-2-4 古斯-漢欣位移(Goos-Hänchen shift) 27 第三章 傳遞矩陣法 33 3-1 非週期性多層介質的透射與反射係數 33 3-2 週期性多層介質頻帶結構 38 第四章 高斯光束與點波源 41 4-1 高斯光束的解析 41 4-1-1 高斯頻譜 41 4-1-2 高斯光束 42 4-1-3 各區場量的計算 43 4-2 點波源的解析 43 4-2-1 模型與方法 43 4-2-2 各區場量的計算 46 第五章 非互易性磁性光子晶體 49 5-1 組成結構 49 5-2 頻帶結構 53 5-3 特性分析 54 5-3-1 與 非互易性比較 54 5-3-2 特性分析 59 5-3-3 特性分析 60 5-3-4 特性分析 63 第六章 結論與末來展望 67 參考文獻 69

    [1] I. L. Lyubchanskii et al., "Spectra of bigyrotropic magnetic photonic crystals" Physica Status Solidi A, 201 (2004).
    [2] I. L. Lyubchanskii et al., "Bigyrotropic photonic crystals" Complex Mediums V: Light and Complexity, 5508 ( 2001).
    [3] P.K. Choudhury,Onkar N. Singh, Frontiers in Optical Technology: Materials And Devices. Nova Science Pub Inc (2006).
    [4] David M. Pozar, Microwave Engineering. Addison Wesley (1997).
    [5] John D. Joannopoulos, Photonic Crystals. New Jersey: Princeton University Press (2008).
    [6] 欒丕綱 陳啟昌, 光子晶體. 五南圖書出版股份有限公司 (2006).
    [7] A. Figotin and I.Vitebsky, "Nonreciprocal magnetic photonic crystals" Phys. Rev. E 63, 066609 (2001).
    [8] Zongfu Yu, Zheng Wan, Shanhui Fan, "One-way total reflection with one-dimensional magneto-optical photonic crystals" Appl. Phys. Lett. 90,121133 ( 2007).
    [9] David K. Chen, Field and Wave Electromagnetics . Addison Wesley (1989).
    [10] Pochi Yeh Amnon Yariv, Optical Waves in Crystals:Propagation and Control of Laser Radiation. John Wiley & Sons (1984).
    [11] Eugene Hecht, Optics , 4th Ed, Addison Wesley ( 2001).
    [12] Pochi Yeh, Optical Waves in Layered Media. John Wiley & Sons (1988).
    [13] Bahaa E. A. Teich, Malvin Carl Saleh, Fundamentals of Photonics. John Wiley & Sons Inc (2007).
    [14] Emil Wolf, A. B. Bhatia Max Born, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press (1999).
    [15] 陳鴻介, "廣義非均向性介質的光傳播研究" , 國立中央大學碩士論文 ( 2007).
    [16] 龔中麟,徐承和, 近代電磁理論. 凡異出版社 (1996).
    [17] John David Jackson, Classical electrodynamics , John Wiley & Sons, Inc. (1998).
    [18] Pi-Gang Luan, "Analysis on the imaging properties of a left-handed material slab" arXiv:physics/0311122v2 (2004).
    [19] Alexander B. Khanikaev and M. J. Steel, "Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional device" Opt. Express, 17, 5265 (2009).
    [20] J. B. Pendry, "Negative Refraction Makes a Perfect Lens" Phys. Rev. Lett., 85, 3966 (2000).
    [21] Shuang Zhang,Yi Xiong,Guy Bartal,Xiaobo Yin,and Xiang Zhang, "Magnetized Plasma for Reconfigurable Subdiffraction Imaging" Phys. Rev. Lett., 106, 243901 (2011).
    [22] Leonid V. Alekseyev and Evgenii Narimanov Zubin Jacob, "Optical Hyperlens: Far-field imaging," Opt. Express., 14, 8247 (2006).

    QR CODE
    :::