跳到主要內容

簡易檢索 / 詳目顯示

研究生: 哈比恩
Muhammad Sofyan Habibi
論文名稱: 激光產生的等離子體中的感應康普頓散射
Induced Compton Scattering In a Laser Produced Plasma
指導教授: 朱旭新
Hsu-Hsin Chu
藏滿康浩
Yasuhiro Kuramitsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 44
中文關鍵詞: 誘導康普頓散射等離子體激光氫氣噴射
外文關鍵詞: Induced Compton scattering, hydrogen gasjet
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 誘導康普頓散射用於研究模擬天體物理環境中的等離子體。 我們使用功率為 10^18 W⁄cm^2 和脈衝持續時間為 50 fs 的激光來代替電磁輻射。 當來自脈衝星、類星體和其他物體的高功率無線電輻射與周圍的稀薄等離子體相互作用時,康普頓散射可能在宇宙中發揮重要作用。 當高能電磁輻射 (hϑ≫m_e c^2 ) 遇到最初處於靜止狀態的電子時,電子獲得能量並以一定角度散射電磁輻射。 這種相互作用涉及從電磁輻射到電子的能量轉移。結果,散射光的光譜將發生變化。 參考文獻研究了各種輻射和電子條件下的康普頓散射。數值研究表明,康普頓散射的光子光譜演變間歇性地形成向較低頻率移動的孤立結構。 我們通過使用國立中央大學的 100 TW 激光設備進行實驗來研究這些影響。事實證明,當電子溫度高時,從光子到電子的能量轉移效率較低。


    Induced Compton scattering (ICS) in a plasma is investigated. The ICS may play important roles in the Universe when high power radio emissions of pulsars, quasars and other objects interact with the surrounding tenuous plasmas. When high energy electromagnetic radiations (hϑ≫m_e c^2 ) encounter an electron, which is initially at rest, the electron will acquire energy and scatter electromagnetic radiations. This interaction involves the energy transfer from electromagnetic radiation to the electron. As a consequence, the spectrum of the scattered light will change. ICS in various conditions of radiation and electron have been studied both numerically and experimentally. The numerical study showed the evolution of photon spectra by ICS intermittently forms solitary structures moving toward lower frequency. We performed an experiment to study this effect at station 4 in 100 TW laser facility of NCU. We model the astrophysical circumstances by replacing electromagnetic radiations with a short-intense laser pulse with a power of 10^19 W⁄cm^2 and pulse duration of 40 fs. We developed hydrogen gasjet as a target. A spectrometer with the detection range of 200-1100 nm is utilized to collect the scattered signals. The spectrum of the scattered light is investigated.

    Contents 摘要 i Abstract ii Acknowledgement iii Contents iv List of Figures vi List of Tables viii 1 Introduction 1 1.1 Pulsar 1 1.2 Induced Compton Scattering 1 1.3 Formation of Solitons 4 2 Laser-Matter Interaction 7 2.1 Intense Laser (NCU 100 TW Laser Facility) 7 2.2 Laser Produced Plasma 8 3 Gasjet 9 3.1 Hydrogen Gasjet 9 3.2 Interaction Length 10 4 Experimental Setup and Diagnostic System 13 4.1 Experimental Design 13 4.2 Gasjet Holder 16 4.3 Shadowgraphy 18 4.4 Interferometry and Temporal Gas Profile 19 5 Results and Discussions 22 5.1 Spectrum and Scattered Lights 22 5.2 Classical Collective Interaction 24 6 Summary 28 7 Bibliography 29

    [1] Hankins T.H., kern J. S., Weatherall J. C. and Eilek J. A., Nature 422,141 (2003). http://dx.doi.org/10.1038/nature01477
    [2] R. A. Zhitnicov, V. A. Kartoshkin, G. V. Klement’ev, and L. V. Usachëva, Pis’ma Zh. Eksp. Teor. Fiz. 22, 293 (1975) [JETP Lett. 22, 136 (1975)].
    [3] J. Dupont-Roc, M. Leduc, and F. Laloë, J. de Phys. 34, 977 (1973).
    [4] H. J. Kolker and H. H. Michels, j. Chem. Phys. 50, 1762 (1969).
    [5] B. M Smirnov, Zh. Eksp. Teor. Fiz. 53, 305 (1967) [Sov. Phys. JETP 26, 204 (1968)].
    [6] P. L. Pakhomov and I. ya. Fugol’, Dokl. Akad. Nuk SSSR 179, 813 (1968) [Sov. Phys. Dokl. 13, 317 (1968)].
    [7] A. P. Hickman and N. F. Lane, Phys. Rev. A10, 444 (1974).
    [8] Dreicer H., Phys. Fluids 7, 735 (1964). http://dx.doi.org/10.1063/1.1711276
    [9] Zel’dovich Y. B., Sov. Phys. Usp. 18,79 (1975).
    http://dx.doi.org/10.1070/PU1975v018n02ABEH001947
    [10] A. F. Illarionov and D. A. Kompaneets, Astrophysics. (1976).
    [11] Decroisette M., Peyraud J., Piar G., Phys. Rev. A 5, 1391 (1972). 10.1103/PhysRevA.5.1391
    [12] Drake R. P., Baldis H. A., Berger R. L., Kruer W. L., Williams E. A., Estabrook K., Johnson T. W., Ypung P. E., Phys. Rev. Lett. 64, 423 (2990). 10.1103/PhysRevLett.64.423
    [13] Everett M. J., Lal A., Gordon D., Wharton K., Clayton C. E., Mori W. B. Joshi C., Phys. Rev. Lett. 74, 1355 (1995). 10.1103/PhysRevLett.74.1355
    [14] Leemans W. P., Clayton K. A., Joshi C., Phys. Rev. Lett. 67, 1434 (1991). 10.1103/PhysRevLett.67.1434
    [15] Tanaka S. J., Asano K. and Terasawa T., Prog. Theor. Exp. Phys. 2015, 073E01 (2015). http://dx.doi.org/10.1093/ptep/ptv086
    [16] Evans, D. E. & Katzenstein, J. Laser light scattering in laboratory plasmas. Rep. Prog. Phys. 32, 207–271 (1969).
    [17] Longair, M. S. High-Energy Astrophysics (Cambridge Univ. Press, 2011).
    [18] B. M. Smirnov, Asimptoticheskie metody v teorii atomnykh stolknovenii (Asymptotic method in the theory of atomic collisions), Nauka, 1973.
    [19] D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Optics Communications 55 (1985) 447–449. doi:10.1016/0030-4018(85)90151-8.
    [20] S. Backus, C. G. D. III, M. M. Murnane, H. C. Kapteyn, High power ultrafast lasers, Review of Scientific Instruments 69 (3) (1998) 1207–1223. arXiv:http://dx.doi.org/10.1063/1.1148795, doi:10.1063/1.1148795.
    URL http://dx.doi.org/10.1063/1.1148795
    [21] Barbosa, D. D, Astrophysical Journal. 1, 254 (1982)
    [22] A. A. Galeev and R. A. Syunyaev, Sov. Phys. JETP 36, 669 (1973).
    [23] T. H. Hankins and J. A. Eilek, Astrophys. J. 670, 693 (2007).
    [24] J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu, and M. N. Rosenbluth, Phys. Fluids 17, 778 (1974).
    [25] D. W. Forslund, J. M. Kindel, and E. L. Lindman, Phys. Fluid 18, 2002 (1975).
    [26] A. T. Lin and J. M. Dawson, Phys. Fluids 18, 201 (1975).
    [27] A. Penny, European Physical Journal, (2013).
    [28] Tanaka S. J., Yamazaki R., Kuramitsu Y., Sakawa Y., Prog. Theor. Exp. Phys. 2020, 063J01 (2020). http://dx.doi.org/10.1093/ptep/ptaa064
    [29] Takabe H., Kuramitsu Y., HPL. 2021.
    [30] V. Wakelam et al., “H2 formation on interstellar dust grains: The viewpoints of theory, experiments, models and observations”, Molecular Astrophysics 9, 2017, doi: 10.1016/j.molap.2017.11.001.

    QR CODE
    :::