跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉庭安
Ting-An Liu
論文名稱: 運用TMS320C6713開發可自動情境分類之雙麥克風除噪系統
Development of an automatic scene classification noise reduction system with dual-microphone utilizing TMS320C6713
指導教授: 吳炤民
Chao-Min Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 105
中文關鍵詞: TMS320C6713噪音抑制情境分類適應性方向性麥克風
外文關鍵詞: TMS320C6713, noise reduction, automatic scene classification strategy, adaptive directional microphone
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是以德州儀器TMS320C6713開發板(Texas Instruments, Dallas, Texas, USA)針對華語實現具有自動情境分類功能的適應性方向性麥克風除噪系統,此系統可在噪音環境下自動開啟麥克風除噪策略提升語音理解度,並在語音環境下關閉麥克風除噪策略保持語音品質。本研究使用的麥克風除噪策略為適應性方向性麥克風系統,此系統能根據噪音位置的變動適應性地改變系統的指向性達到除噪效果,實驗結果顯示此除噪系統能根據噪音位置的變動適應性地改變系統的指向性,最高具有約2.3dB的語音理解度加權式方向性指數(intelligibility-weighted directivity index, DISII)。而本研究使用多層感知機網路做為自動情境分類策略中的分類器並以八個與F0有關的特徵作為多層感知機網路的輸入,電腦模擬結果顯示此分類系統能達到平均97%的分類正確率,而實驗結果顯示此系統實作在TMS320C6713開發板上後能達到平均89.6%的分類正確率。本研究另外使用HINT Pro語言聽力檢查儀(Bio-logic, Chicago, IL, USA)對八位受測者在不同的噪音環境下進行語音接收閾值(speech reception threshold, SRT)的測試,結果顯示此系統能在噪音環境下降低最多6.2dB的平均SRT,而在語音品質的評估方面本研究使用語音品質客觀評量(perceptual evaluation of speech quality, PESQ)作為指標,實驗結果顯示,在訊噪比超過15dB時使用自動情境分類系統控制除噪策略開啟所得到的PESQ評分比不使用自動情境分類系統來的高,最大差距為0.24。由以上實驗結果可驗證此系統在噪音環境下能有效提升語音理解度,並在語音環境下保持語音品質不失真。


    The purpose of this research was to develop an automatic scene classification noise reduction system with dual-microphone utilizing TMS320C6713 DSP Starter Kit (Texas Instruments, Dallas, Texas, USA). This system can automatically select the function of microphone noise reduction strategy to improve the intelligibility of speech in noise environment and turn off this function to maintain the quality of speech in speech environment. In this study, an adaptive directional microphone system was selected as microphone noise reduction strategy. Based on the noise direction, this system can adaptively change the directivity of the microphone to reduce the noise signal. The results showed that this system provides the function of adaptive change on system’s directivity and that the intelligibility-weighted directivity index (DISII) can reach 2.3dB. The multilayer perceptron network was used as the automatic scene classification strategy to classify speech or noise environment according to the eight F0-based features. The results of computer simulation and hardware implementation indicated that this system provides 97% average correct rate and reaches 89.6% average correct rate with TMS320C6713 DSP Starter Kit, respectively. Additionally, this study used HINT Pro system (Bio-logic, Chicago, IL, USA) to measure the speech reception threshold (SRT) from eight normal hearing subjects in different noise conditions. The results showed that this system can reduce 6.2dB SRT. The perceptual evaluation of speech quality (PESQ) was further used to estimate the quality of speech. Our experimental results showed that the difference of PESQ can reach up to 0.24 with and without using automatic scene classification strategy to control the noise reduction strategy. The above experimental results suggest that this system not only improve intelligibility of speech in noise environment but also keep the quality of speech in speech environment.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 適應性方向性麥克風策略 3 1.3 自動情境分類策略 6 1.4 相關研究與文獻探討 8 1.5 研究目的 18 1.6 論文內容架構 19 第二章 雙麥克風策略與自動情境分類策略 21 2.1 適應性方向性麥克風策略 21 2.2 自動情境分類策略 30 第三章 系統架構與實驗方法 38 3.1 實驗語料與噪音 39 3.2 TMS320C6713開發板與麥克風電路 40 3.3 適應性方向性麥克風系統的實現方法與實驗流程 43 3.3.1 實現方法與實驗環境 43 3.3.2 實驗一 45 3.3.3 實驗二 48 3.4 自動情境分類系統的實現方法與實驗流程 48 3.5 除噪系統的實現方法與實驗流程 51 3.5.1 實驗一 52 3.5.2 實驗二 54 第四章 結果與討論 59 4.1 適應性方向性麥克風系統的實驗結果與討論 59 4.1.1 實驗一 59 4.1.2 實驗二 65 4.2 自動情境分類系統的實驗結果與討論 67 4.3 除噪系統的實驗結果與討論 75 4.3.1 實驗一 76 4.3.2 實驗二 78 第五章 結論與未來展望 80 5.1 結論 80 5.2 未來展望 82 參考文獻 84 附錄 87

    Alexandre, E., Cuadra, L., Alvarez, L. and Rosa-Zurera, M. (2007). NN-based automatic sound classifier for digital hearing aids. IEEE International Symposium on Intelligent Signal Processing (WISP), University of Alcala Alcala de Henares, Spain. 03 - 05 Oct
    Alexandre, E., Cuadra, L., Rosa, M. and Lopez-Ferreras, F. (2007). "Feature Selection for Sound Classification in Hearing Aids Through Restricted Search Driven by Genetic Algorithms." IEEE Transactions on Audio, Speech and Language Processing 15(8): 2249-2256.
    ANSI (2007). Methods for Calculation of the Speech Intelligibility Index. ANSI S3.5-1997.
    Bentler, R., Palmer, C. and Mueller, H. G. (2006). "Evaluation of a Second-Order Directional Microphone Hearing Aid: I. Speech Perception Outcomes." Journal of the American Academy of Audiology 17(3): 179-189.
    Berghe, J. V. and Wouters, J. (1998). "An adaptive noise canceller for hearing aids using two nearby microphones." The Journal of the Acoustical Society of America 103(6): 3621-3626.
    Buchler, M., Allegro, S., Launer, S. and Dillier, N. (2005). "Sound classification in hearing aids inspired by auditory scene analysis." EURASIP Journal on Applied Signal Processing 2005: 2991-3002.
    Cabanas Molero, P., Ruiz Reyes, N., Vera Candeas, P. and Maldonado Bascon, S. (2010). "Low-complexity F0-based speech/nonspeech discrimination approach for digital hearing aids." Multimedia Tools and Applications 54(2): 291-319.
    Chen, J., Phua, K., Shue, L. and Sun, H. (2009). "Performance evaluation of adaptive dual microphone systems." Speech Communication 51(12): 1180-1193.
    Compernolle, D. V. (1990). Switching adaptive filters for enhancing noisy and reverberant speech from microphone array recordings. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Albuquerque, New Mexico, USA. 3-6 April
    Desloge, J. G., Rabinowitz, W. M. and Zurek, P. M. (1997). "Microphone-array hearing aids with binaural output .I. Fixed-processing systems." IEEE Transactions on Speech and Audio Processing 5(6): 529-542.
    Elko, G.W. and Pong, A.-T. N. (1995). A simple adaptive first-order differential microphone. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, New York, USA. October
    Gil-Pita, R., Alexandre, E., Cuadra, L., Vicen, V. and Rosa-Zurera, M. (2009). "Analysis of the effects of finite precision in neural network-based sound classifiers for digital hearing aids." EURASIP Journal on Advances in Signal Processing 2009: 3033-3041.
    Griffiths, L. J. and Jim, C. W. (1982). "An alternative approach to linearly constrained adaptive beamforming." IEEE Transactions on Antennas and Propagation 30(1): 27-34.
    Hamacher, V., Chalupper, J., Eggers, J., Fischer, E., Kornagel, U., Puder, H. and Rass, U. (2005). "Signal processing in high-end hearing aids: state of the art, challenges, and future trends." EURASIP Journal on Applied Signal Processing 2005(1): 2915-2929.
    ITU-T (2001). Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. ITU-T P.862.
    Luo, F.-L., Yang, J., Pavlovic, C. and Nehorai, A. (2002). "Adaptive null-forming scheme in digital hearing aids." IEEE Transactions on Signal Processing 50(7): 1583-1590.
    Maj, J.-B., Royackers, L., Wouters, J. and Moonen, M. (2006). "Comparison of adaptive noise reduction algorithms in dual microphone hearing aids." Speech Communication 48(2006): 957-970.
    NOISEX-92 (1993). NOISEX-92 noise database, Signal Processing Information Base by the Signal Processing Society and the National Science Foundation. http://spib.rice.edu/spib.html.
    Nordqvist, P. and Leijon, A. (2004). "An efficient robust sound classification algorithm for hearing aids." The Journal of the Acoustical Society of America 115(6): 3033-3041.
    Ricketts, T. and Henry, P. (2002). "Evaluation of an adaptive, directional-microphone hearing aid." International Journal of Audiology 41(2): 100-112.
    Ruiz-Reyes, N., Vera-Candeas, P., Munoz, J. E., Garcia-Galan, S. and Canadas, F. J. (2009). "New speech/music discrimination approach based on fundamental frequency estimation." Multimedia Tools and Applications 41(2): 253-286.
    TI (2003) "TMS320C6713 DSK Technical Reference, 506735-0001 Rev. B."
    Yoganathan, V. and Moir, T. J. (2010). Speech enhancement using microphone array neural switched Griffiths-Jim beamformer. International Conference on Wireless Communications and Signal Processing (WCSP), Suzhou, China. 21-23 Oct
    Zhang, H., Fu, Q. and Yan, Y. (2009). "A two-element-microphone-array-based speech recognition system in vehicle environment." Acoustical Science and Technology 30(1): 51-54.
    內政部社會司 (2011). 內政統計通報100年第35週. 中華民國.
    內政部社會司 (2012). 內政統計通報101年第2週. 中華民國.
    國家通訊傳播委員會 (2010). 行動通信業務客戶統計數. 中華民國.
    郭世傑 (2011). 以軟體為基準的助聽器模擬平台之發展-使用雙麥克風策略之固定以及非固定背景噪音抑制, 國立中央大學電機工程研究所. 碩士論文.
    黃國原 (2009). 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響, 國立中央大學電機工程研究所. 碩士論文.
    黃銘緯 (2005). 台灣地區噪音下漢語語音聽辨測試, 國立台北護理學院聽語障礙科學研究所. 碩士論文.

    QR CODE
    :::