| 研究生: |
朱紹維 Shao-Wei Chu |
|---|---|
| 論文名稱: |
鈣鈦礦發光二極體熱特性模擬及優化之研究 |
| 指導教授: |
韋安琪
An-Chi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 鈣鈦礦發光二極體 、熱模擬 、樣品實驗 、散熱性能優化 |
| 外文關鍵詞: | Perovskite light-emitting diode, Thermal simulation, Sample experiment, Heat dissipation performance |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦作為一種結構統稱,該類結構之材料因有出色的光學特性而受到半導體產業的重視,其應用之一為鈣鈦礦發光二極體(以下簡稱鈣鈦礦LED)。鈣鈦礦LED相比於其他的常見發光二極體有原料容易取得、價格廉價、可溶液加工等優勢,因此作為新一代的發光元件備受矚目。然而現階段鈣鈦礦LED仍有許多不足之處,工作過程之產熱將會影響其性能與壽命的表現,故本研究將著重探討鈣鈦礦發光二極體之熱特性。
本文利用模擬軟體建構鈣鈦礦LED之熱模擬模型,並與樣品實驗交叉比對,後藉由更改結構與材料對模型進行改良,並透過模擬驗證不同措施對散熱性能的提升效果。
本研究主要分爲實驗與模擬相互驗證,以及結構優化設計:首先於實驗中給予鈣鈦礦發光二極體樣品穩定電源,並量測其溫度,後透過軟體建立樣品模型,並在相同條件下進行模擬,隨後比對兩者結果以驗證模擬模型之準確度;其次是結構優化設計,本研究提出了三種措施,包含:1) 對電極的間距進行調整;2) 於模型中加入電子與電洞傳輸層;3) 變更模型電極之材料,並模擬分析上述不同方案對於鈣鈦礦LED元件的散熱性能影響。
Perovskite has received much attention in the semiconductor industry because of its excellent optical properties. One of the applications of this material is the perovskite light-emitting diode (PeLED). Compared with other common light-emitting diodes (LED), PeLED has plenty of advantages, such as compatibility with solution process lower price. However, there are still many deficiencies in PeLED in current stage. The heat generation during the working process may affect its performance and lifetime. Therefore, this study will focus on the thermal characteristics of the PeLED.
In this thesis, a thermal simulation model of PeLED had been constructed in the simulation software, COMSOL. Also, the model has been compared with the experiments of the PeLED sample. After the verification, improved the thermal performance of PeLED was improved by adjusting the structure and materials in the model. Through the simulation, the performance of each measure on the improvement of heat dissipation was verified.
This research is mainly divided into two parts: the verification of the model through the comparisons with experiments and the simulation of the proposed measures with different structures and materials. In the experiment, a stable power was provided to a PeLED sample, and then its temperature was measured with a thermocouple. In the simulation, the sample model was established in the software under the conditions agreeing with the experiment. Compared with the experimental results, the simulation results have showed the acceptable accuracy. The second part was to change the structures and materials of the PeLED in the verified model for improving its thermal performance. Three measures, including: 1) adjusting the spacing between electrodes, 2) adding electron transfer layer and hole transfer layer to the device, and 3) using different electrode materials are proposed and simulated in this study. The analyses of the heat dissipation performance of the PeLED for every measure are discussed in this thesis.
參考文獻
[1] 劉啟鑫,「深紫外發光二極體光熱特性模擬及優化之研究」,國立中央大學,碩士論文,民國 110 年。
[2] A. Albatayneh, "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings." Energies 14, 2021.
[3] 黃柏霖,「隨機奈米粒子模型應用於OLED出光增益之研究」,國立中央大學,碩士論文,民國 107 年。
[4] 林中冠、賴敏良、李君婷,「新世代鈣鈦礦材料:合成、光電特性及應用」,物理雙月刊,2018。
[5] on line resources︰JDI首款MicroLED原型機亮相 亮度達3000 nits。
取自:https://kknews.cc/digital/y5xez9k.html
[6] on line resources︰科學家研製出長壽命鈣鈦礦白光發光二極管。
取自:https://ppfocus.com/hk/0/scebde6b2.html
[7] on line resources︰Micro LED螢幕走到哪兒了。
取自:https://www.eettaiwan.com/20210621nt61-micro-led-monitor/
[8] on line resources︰OLED、Mini LED、Micro LED顯示技術全面比較。
取自:https://xueqiu.com/1553799558/151612390
[9] on line resources︰全無機Cs-based鈣鈦礦量子點發光顯示元件。
取自: https:// pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=351
[10] on line resources︰京東方、三安光電、華星光電等國內Micro LED勢力待發。
取自: https://kknews.cc/news/vlprrgq.html
[11] Gillzyb,「鈣鈦礦電池:太陽能產業的新星」,綠能趨勢網,2014。
[12] L. N. Quan, "Perovskites for light emission." Advanced Materials, 30, 2018.
[13] P. Du, "Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement." Nature Communications, 12, 2021.
[14] A. Kojima, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells." Journal of the american chemical society, 131, 2009.
[15] J. Li, "Single‐layer light‐emitting diodes using organometal halide perovskite/poly (ethylene oxide) composite thin films." Advanced materials , 27, 2015.
[16] Z. Chen, "Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%." Joule 5, 2021.
[17] W. C. Chen, "High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands." Chemical Engineering Journal 414, 2021.
[18] L. Zhao, "Thermal management enables bright and stable perovskite light‐emitting diodes." Advanced Materials 32, 2020.
[19] K. Zhang, "Opportunities and challenges in perovskite LED commercialization." Journal of Materials Chemistry C 9, 2021.
[20] F. Zhang, "High‐Efficiency Pure‐Color Inorganic Halide Perovskite Emitters for Ultrahigh‐Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices." Small Methods 2, 2018.
[21] 黃莘閎,「有機發光二極體之軟性基板散熱設計及壽命改善之研究」,國立中央大學,碩士論文,民國 108 年。
[22] Z. Song, J. Zhao, and Q. Liu, "Luminescent perovskites: recent advances in theory and experiments." Inorganic Chemistry Frontiers 6, 2019.
[23] K. Zhang, "Opportunities and challenges in perovskite LED commercialization." Journal of Materials Chemistry C 9, 2021.
[24] M.J. Moran, "Introduction to thermal systems engineering: thermodynamics, fluid mechanics, and heat transfer." John Wiley & Sons, 2002.
[25] A.C. Wei, "Integration of optical and thermal models for organic light-emitting diodes", Electronics, 8, 2019.
[26] P. Schwamb, T. C. G. Reusch, C. J. Brabec,“Passive cooling of large-area organic light-emitting diodes.”Org. Electron, 14, 2013.
[27] Z. C. Li, "Applications of organic additives in metal halide perovskite light-emitting diodes." ACTA PHYSICA SINICA 68, 2019.
[28] on line resources︰鈣鈦礦熱力學穩定性的新規律。
取自:http://www.ifuun.com/a201802079830890/
[29] on line resources︰關於熱電偶。
取自:https://kknews.cc/zh-tw/news/g93nzpy.html
[30] on line resources︰瞭解熱電偶、測溫線、感溫線的基本原理。
取自:https://www.researchmfg.com/2021/06/thermocouple/
[31] on line resources︰TES Electrical Electronic Corp。
取自:http://www.tes.com.tw/product_detail.asp?seq=120
[32] on line resources︰Phase Diagram for Water。
取自:https://courses.lumenlearning.com/cheminter/chapter/phase-diagram-
for-water/
[33] on line resources︰TES Electrical Electronic Corp。
取自:TES-1310數位式溫度錶說明書
[34] L. Zhao, "Improved outcoupling efficiency and stability of perovskite light‐emitting diodes using thin emitting layers." Advanced Materials 31, 2019.
[35] Y. C. Ye, "Minimizing Optical Energy Losses for Long‐Lifetime Perovskite Light‐Emitting Diodes." Advanced Functional Materials, 31, 2021.
[36] online resources︰COMSOL database。
取自:https://www.pitotech.com.tw/index.html
[37] A. Kanak, "Thermal conductivity of CsPbBr3 halide perovskite: Photoacoustic measurements and molecular dynamics analysis." AIP Conference Proceedings, 2305, 2020.
[38] D. Yang, "Dielectric properties of a CsPbBr 3 quantum dot solution in the terahertz region." Applied optics, 56, 2017.
[39] D. Malyshkin, "New phase transition in CsPbBr3." Materials Letters 278, 2020.
[40] online resources︰MatWeb material property data。
取自:https://www.matweb.com/search/DataSheet.aspx?MatGUID=
df314cfade1e4eaf8441be108969ebb0
[41] O. Kamoun, "Nanostructured Fe, Co-Codoped MoO3 Thin Films." Micromachines, 10, 2019.
[42] L. D. López‐Carreño, A. Pardo, M. Zuluaga, O. L. Cortés‐Bracho, J. Torres, & J. E. Alfonso, "Electrical transport properties of MoO3 thin films prepared by laser assisted evaporation. " physica status solidi c, 4, 2007.
[43] D. F. Smith, "Low temperature heat capacity and entropy of molybdenum trioxide and molybdenum disulfide." Journal of the American Chemical Society 78, 1956.
[44] online resources︰MatWeb material property data。
取自:https://www.matweb.com/search/DataSheet.aspx?MatGUID=
173a8f1e7cec4ce7af5dc3b90d10f756
[45] S. Park, R. Kang, & S. Cho, "Effect of an Al-doped ZnO electron transport layer on the efficiency of inverted bulk heterojunction solar cells. " Current Applied Physics, 20, 2020.
[46] online resources︰Material Property Database
取自:http://www.mit.edu/~6.777/matprops/ito.htm
[47] D. Thuau, I. Koymen, and R. Cheung. "A microstructure for thermal conductivity measurement of conductive thin films." Microelectronic engineering 88, 2011.
[48] L. Wang, J. Wen, C. Yang, & B. Xiong, "Potential of ITO thin film for electrical probe memory applications. " Science and technology of advanced materials, 19, 2018.
[49] online resources︰CAS Database。
取自:https://www.chembk.com/en/chem/TPBi
[50] Y. Chen, M. Zhang, X. Zhang, Z. Lei, X. Zhang, L. Hao, & W. Huang, "Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer. " Journal of Luminescence, 186, 2017.
[51] U. Lang, "Microscopical investigations of PEDOT: PSS thin films." Advanced Functional Materials 19, 2009.
[52] X. Fan, "PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. " Advanced Science, 6, 2019.
[53] J. Liu, "Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity." Macromolecules 48, 2015.