| 研究生: |
林則名 Tse-ming Lin |
|---|---|
| 論文名稱: |
衝擊加速度與砂土力學性質之研究 Study on relationships between impact acceleration and mechanical properties of sand |
| 指導教授: |
張惠文
Huei-wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 衝擊試驗 、相對密度 、單位重 、衝擊加速度 |
| 外文關鍵詞: | Unit weight, impact acceleration, impact test, relative density |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了檢驗現地土壤單位重與相對密度,通常採用砂錐法或橡皮膜法,但仍有諸多不便之處。本研究之目的在於探討衝擊加速度與砂土單位重及相對密度的相關性,以作為求取現地土壤單位重之依據。
本研究以西螺砂為試驗土樣,以霣降方式製作各種相對密度之砂土。於夯錘上裝置加速度計,連接資料擷取系統(TEAM 490),夯擊試體後,可得加速度歷時曲線。此曲線之尖峰值即為衝擊加速度(Retardation或Impact acceleration, )。本研究對各種夯錘質量、落距、砂土試體之相對密度(單位重)以及不同尺寸試體之試驗結果做分析。試驗結果顯示,夯錘質量越大,對於相同緊密程度之試體,其衝擊加速度越小;夯錘落距越大時,所得衝擊加速度會越大;落距相同,貫入量越大者,其衝擊加速度越小;試驗結果受到邊界效應影響,CBR模所製作試體之試驗結果會高於大型土桶之試驗結果,但可藉由結果進行迴歸並加以修正。最後並以中央大學大型力學實驗室之大型土槽,驗證以室內大型土桶進行衝擊試驗已不受邊界效應所影響,並建立一預估公式,能以CBR模試驗預估該相對密度(單位重)之現場衝擊加速度。
In order to measure the unit weight and relative density of soil in field, the sand cone method or the rubber balloon method are used frequently, but it is still not convenient enough. This research used traveling pluviation assembly to prepare the Siluo sand specimens with different relative densities. By setting a accelerometer on the hammer and connected the data logger(TEAM490) system to the personal computer, the variation of acceleration during the impact of hammer can be measured. The peak values of acceleration in the acceleration-time curves are defined as (Impace acceleration or retardation). This research discussed the influences of hammer mass, droping height of hammer, relative density and mold size on the experimental results. From these experimental results, it is understood that a larger hammer mass will cause a smaller acceleration for the specimens with the same density. If the dorping height of hammer was increased, the impact acceleration would be increased also. Under the same condition of droping height of hammer, if the penetration depth is larger, the impact acceleration would become smaller. The boundary condition influences the experimental results obviously. For the same relative density of soil specimens, the values of will be greater than that of . In order to verify the large scale mold has no influence of boundary conditions on the results of experiments, we used the indoor test pit to perform tests and found a formula which can be used to predict the unit weight and relative density of soil in field.
1. 王志偉,「微音錐應用於土壤音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
2. 李建中,「打樁引致之地表振動」,土木水利,第十卷,第四期,第46-59頁(1984)。
3. 佐藤厚子、西川純一、山澤文雄,「衝擊加速度による改良盛土の 品質管理事例」,土與基礎,第48期,第21-23頁(2000)。
4. 周國鈞,地基處理技術第一冊,中國冶金工業出版社,北京,第1-38頁(1989)。
5. 陳昱翔,「利用波傳理論檢測土壤夯實品質之可行性評估」,碩士論文,朝陽科技大學營建工程系(2008)。
6. 詹有智,「砂土承受夯擊時之動應力分布」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
7. 羅一堯,「特高頻雷達降水回波功率與終端速度相關性之觀測與模擬」,碩士論文,國立中央大學太空科學研究所,中壢(2006)。
8. Annan, A.P., “Time Domain Reflectometry-Air Gap Problem for Parallel Wires Transmission Lines, Report of Activities, Part B.” Geological Survey of Canada, Vol. 04.08, pp. 77-84(1977).
9. ASTM, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” Annual Book of ASTM Standards, D-698, Vol. 04.08, West Conshohocken, PA(2003).
10. ASTM, “Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method,” Annual Book of ASTM Standards, D-1556, Vol. 04.08, West Conshohocken, PA(2000).
11. ASTM, “Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method,” Annual Book of ASTM Standards, D-2167, Vol. 04.08, West Conshohocken, PA(1994).
12. ASTM, “Standard Test Method for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth),” Annual Book of ASTM Standards, D-2922, West Conshohocken, PA(2001).
13. Biot, M.A., “Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid, I: Low-Frequency Range,” Journal of Acoustic Society of America, Vol. 28, pp.168-178(1956).
14. Davis, J.L. and Chudobiak, W.J., “In-site Meter for Measuring Relative Permittivity of Soils,” Geological Survey of Canada, Paper 75-1A, pp. 75-79(1975).
15. Dowding, C.D., “Geo-Measurements with Metallic TDR Cable Technology for Infrastructure Surveillance,” Transportation Research Board , 79th Annual Meeting , Paper No. 00531(2002).
16. Dowding, K.J., Beck, J.V., and Blackwell, B.F., “Estimating Temperature - Dependent Thermal Properties,” Journal of Thermo physics and Heat Transfer, Vol 13, No. 3, pp. 328-336(1999).
17. Ewing, W.M., Jardetzky, W.S. and Press, P., “Elastic Waves in Layered Media,” McGraw-Hill (1957).
18. Jessberger, H.L., and Beine, R. A., “Heavy Tamping : Theoretical and Practical Concepts,” Proceedings of the 10th ICSMFE, Stockholm, pp.695-699 (1981).
19. Noborio, K., “Measurement of Soil Water Content and Electric Conductivity by Time Domain Reflectometry: a Review,” Computational Electronic Agriculture, Vol.31, No.3, pp. 213-237(2001).
20. Proctor, R.R., “Design and Construction of Rolled Earth Dams,” Engineering News Record, Vol. 3, pp. 245-248, 286-289, 348-351, 372-376(1933).
21. Theissen, J. R. and Wood, W. C., “Vibration in Structures Adjacent to Pile Driving,” Dames and Moore Engineering Bulletin, No.60, pp.4-21 (1982).
22. Wood, A.B., “A Text Book of Sound,” Bell and Sons, London(1930).
23. Wiss, J.F., “Construction Vibrations: State-of-the-Art,” Journal of the Geotechnical Engineering Division, Proceedings of the ASCE, Vol. 107, GT2, pp. 167-182 (1981).
24. Xiong Yu and Vincent P. Drnevich, “Soil Water Content and Dry Density by Time Domain Reflectometry,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE(2004).