跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉庭瑋
Ting-wei Liu
論文名稱: 太陽光譜分光器之設計
Design of Solar Spectrum Dividing Device
指導教授: 李朱育
Ju-yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 頻譜分光光微影技術表面刮除光柵
外文關鍵詞: Spectrum dividing, Photolithography, Surface relief grating
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究的主要目標為太陽能應用中光譜分光器的設計,根據光柵繞射分光的特性,配合光阻微顯影技術讓光阻產生一維結構與利用乾性蝕刻產生表面刮除光柵(surface relief)的成型技術,讓太陽光中紅外光波段的能量有效的被光柵繞射,即可達到分光的效果。
      本論文使用Shipley S1818正光阻,為光阻顯影時常用的材料。根據光的干涉與光阻特性的不同,顯影後獲得的光阻圖案也就不同,曝光時的入射光線角度與顯影時間的多寡都會影響光阻成型,如何掌控參數為此階段的重點。接著利用蝕刻方式讓光柵成型,每個階段的銜接與各個參數的設計便是此論文的研究重點。
      利用理論推導、軟體模擬和量測證實,此光柵在紅外波段(800~1100nm)的太陽光能量繞射效率達90%,繞射效率峰值的中心波長與模擬誤差大約在10~30nm。
      在未來,希望將可見光的繞射效率降低至可以應用在太陽能分光上,期望可以讓此種光柵具有更優良的紅外分光效果,提升今後太陽能產業的光電轉換效率。


    In this thesis, the main purpose is design for solar application based on Spectrum-Dividing Technology. By using photolithography and dry etching to fabricate the surface relief grating which can make the infrared part of light diffracted from the sun effectively.
    In this thesis, we use Shipley S1818 positive photoresist to be materials in our experiment. According to interference of exposure light and characteristic of photoresist, the result of photolithography development could have many possibilities. The angle of incident light during exposure and the time of development can also influence the experiment result. How to control these parameters become the most important thing during this phase. Then we can manufacture the surface relief grating by dry etching. The interactions between each phases and the design of every parameters is the research key in this paper.
    Based on theory and simulation by software, the experiment results demonstrate that the average energy of diffraction efficiency in infrared is about 90% and the central wavelength deviation of maximum diffractive efficiency between theoretical values and experiment results is about 10 to 30 nanometers.
    In the future, we can make the diffraction of visible light decrease by controlling the parameter to increase the solar conversion efficiency in solar system applications.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 2 1.3研究目的 7 1.4論文架構 9 第二章 實驗原理 10 2.1干涉原理與技術 10 2.2嚴格耦合波理論 14 2.3繞射效率的計算 19 2.4光阻特性 22 2.5蝕刻原理 25 第三章 實驗架構 27 3.1實驗流程與方法 27 3.2曝光與量測架構 31 3.3光阻材料規格 33 3.4實驗器材規格 35 第四章 實驗結果與討論 40 4.1G-solver模擬範例 40 4.2光柵參數建立 45 4.3HDP蝕刻實驗結果 54 第五章 結論與未來展望 61 5.1結論 61 5.2未來展望 62 Reference 63

    [1]M. Hoogwijk, “On the global and regional potential of renewable energy sources”, Thesis Utrecht University, 1974.
    [2]T. B. Johansson, H. Kelly, A. K. N. Reddy, Robert Williams, “Renewable Energy: Sources for Fuels and Electricity”, Island Press, 1992.
    [3]J. P. Painuly, “Barriers to renewable energy penetration; a framework for analysis”, Renewable Energy, Vol. 24, pp. 73-89, 2001.
    [4]羅智慧, 龍新峰, 「槽式太陽能熱發電技術研究現狀與發展」, 電力設備, Vol. 7, pp. 29-32, 2006.
    [5]M. Yamaguchi, A. Luque, “High efficiency and high concentration in photovoltaics”, IEEE Transactions on Electron Devices, Vol. 46, pp. 2139-2144, 1999.
    [6]A. G. Imenes, D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review”, Solar Energy Materials and Solar Cells, Vol. 84, pp. 16-69, 2004.
    [7]E. Karvelas, A. Papadopoulos, D. Dousis, Y. P. Markpoulos, E. Mathioulakis, G. Panaras, V. Vamvakas, D. Davazoglou, “Mirrors based on total reflection for concentration PV panels”, Solar Conccentrators for the Generation of Electricity or Hydrogen, 2007.
    [8]K. Ryu, J. G. Rhee, K. M. Park, J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system”, Solar Energy, Vol. 80, pp. 1580-1587, 2006.
    [9]R. K. Kostuk, G. Rosenberg, “Analysis and Design of Holographic Solar Concentrators”, Proceedings of SPIE, Vol. 7043, pp. 70430I-1, 2008.
    [10]虞秀琴, 朱亞軍, 李劬, 「複合拋物面型集光器的設計」, Journal of Shanghai Jiaotong University, Vol. 32, pp. 82-86, 1998.
    [11]T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings”, Proceedings of the IEEE, Vol. 73, pp. 894-937,1985.
    [12]M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings”, Optical Society of America, Vol. 72, pp 1385-1392,1982.
    [13]T. Clausnitzer, T. Kampfe, E. B. Kley, A. Tunnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings”, Optics Express, Vol. 13, pp. 10448-10456, 2005.
    [14]C. Heine, R. H. Morf, M. T. Gale, “Coated submicron gratings for broadband antireflection in solar energy applications”, Journal of Modern Optics, Vol. 43, pp. 1371-1377, 1996.
    [15]S. I. Na, S. S. Kim, J. Jo, S. H. Oh, J. Kim, D. Y. Kim, “Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography”, Advanced Functional Materials, Vol. 18, pp. 3956-3963, 2008.
    [16]C. Heine, R. H. Morf, “Submicrometer gratings for solar energy applications”, Applied Optics, Vol. 34, pp. 2476-2482, 1995.
    [17]M. G. Moharam, T. K. Gaylord, “Couples-wave analysis of reflection grating”, Applied Optics, Vol. 20, pp. 240-244, 1981.
    [18]M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach”, JOSA A, Vol. 12, pp. 1077-1086, 1995.
    [19]T. Clausnitzer, T. Kampfe, E. B. Kley, A. Tunnermann, A. V. Tishchenko and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency”, Optics Express, Vol. 16, pp. 5577-5584, 2008.
    [20]J. Nilsson, R. Leutz, B. Karlsson, “Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrator”, Solar Energy Materials and Solar Cells, Vol. 91, pp. 525-533, 2007.
    [21]T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids”, J. Vac. Sci. Technol. B, Vol. 13, pp. 2732, 1995.
    [22]W. Hinsberg, F. A. Houle, J. Hoffnagle, M. Sanchez, G. Wallraff, M. Morrison, and S. Frank, “Deep-ultraviolet interferometric lithography as a tool for assessment of chemically amplified photoresist performance”, J. Vac. Sci. Technol. B, Vol. 16, pp. 3689, 1998.
    [23]S. R. J. Brueck, S. H. Zaidi, X. Chen, Z. Zhang, “Interferometric lithography from periodic arrays to arbitrary patterns”, Microelectron. Eng., Vol.41-42, pp. 145, 1998.
    [24]R. Murillo , H. A. van Wolferen, L. Abelmann, J. C. Lodder, ” Fabrication of patterned magnetic nanodots by laser interference lithography”, Microelectronic Engineering, Vol. 78–79, pp. 260-265 , 2005.
    [25]F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, F. Mucklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface”, Biomaterials, Vol. 326, pp. 2307-2312, 2005.
    [26]T. A. Savas, M. L. Schattenburg, J. M. Carter, H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids”, J. Vac. Sci. Technol. B, Vol.14, pp. 4167, 1996.
    [27]X. Chen, S. R. J. Brueck, “Imaging interferometric lithography : approaching the solution limits of optics”, Optics Letters, Vol. 24, pp. 124, 1999.
    [28]X. Chen, S. R. J. Brueck, “Imaging interferometric lithography: A wavelength division multiplex approach to extending optical lithography”, J. Vac. Sci. Technol. B, Vol. 16, pp. 3392, 1999.
    [29]M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction”, JOSA, Vol. 71, pp. 811-818, 1981.
    [30] 黃家麟, 「四道光干涉微影之曝光與顯影參數對微結構輪廓及深度之探討」 , 國立中央大學, 碩士論文, 民國95年.

    QR CODE
    :::