| 研究生: |
林坤亮 Kun-liang Lin |
|---|---|
| 論文名稱: |
固態氧化物燃料電池封裝玻璃與金屬連接板接合件潛變性質分析 Analysis of Creep Properties of Glass Ceramic Sealant and Its Joint with Metallic Interconnect for Solid Oxide Fuel Cells |
| 指導教授: |
林志光
Chih-kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | Ring-on-ring測試 、潛變 、固態氧化物燃料電池 、封裝玻璃陶瓷 |
| 外文關鍵詞: | Solid oxide fuel cell, Glass ceramic sealant, Ring-on-ring test, Creep |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在探討經過不同時效處理之GC-9封裝玻璃陶瓷燒結試片,在800 oC下的潛變性質與破壞模式,並探討金屬連接板不銹鋼(Crofer 22 H)與封裝玻璃陶瓷接合件於800 oC下之潛變性質與不同負載模式下之破壞形態。
實驗結果顯示,經過1000小時時效處理後之GC-9玻璃陶瓷燒結試片,於相同的應力負載下,其變形量比未時效及100小時時效之試片來得低且具有較長的潛變壽命,此乃於結晶量較多及粗大化所致。藉由最小應變率來看,未時效試片之最小應變率明顯高於其時效處理後的試片,由此可證,時效時間越長,抵抗潛變變形的能力越高。在潛變壽命方面,欲達到1000小時以上之壽命,未時效、100小時時效及1000小時時效所施加的應力負載分別需小於6 MPa、9 MPa及15 MPa,再次證明經由時效過後的試片,所能承受之負載較大,抵抗潛變變形的能力越高。
關於GC-9玻璃陶瓷與Crofer 22 H金屬連接板接合件的潛變性質,接合件試片於800 oC下的剪力與拉力潛變壽命會隨著負載減少而增加。在剪力試片方面,具1000小時壽命的潛變強度約為剪力接合件強度的四分之一,而張力試片具1000小時壽命的潛變強度則約為張力接合件強度的百分之九。另外,對於剪力及張力潛變試片,不論其潛變壽命長短,其裂紋皆始於尖晶石與鉻酸鋇層之界面,隨後沿著鉻酸鋇層生長,而後在鉻酸鋇層與玻璃陶瓷基材之間交替遊走,最後在玻璃陶瓷基材內發生破壞。
Creep properties at 800 oC are investigated for a newly developed solid oxide fuel cell glass-ceramic sealant (GC-9) in variously aged conditions using a ring-on-ring test technique. Creep properties of sandwich joint specimens made of GC-9 and a interconnect steel (Crofer 22 H) are also investigated at 800 oC under several constant shear and tensile loadings.
When subjected to an applied constant load at 800 oC, the 1000 h-aged GC-9 can last longer than the non-aged and 100 h-aged ones before rupture. The 1000 h-aged GC-9 also exhibits a much smaller minimum creep strain rate than do the non-aged and 100 h-aged ones. Therefore, a longer aging time of 1000 h leads to a greater extent of crystallization and creep resistance at 800 oC for the given GC-9 glass-ceramic sealant. The creep strength at 1000 h is about 6 MPa, 9 MPa, and 15 MPa, for the non-aged, 100 h-aged, and 1000 h-aged GC-9, respectively.
The creep rupture time of Crofer 22 H/GC-9/Crofer 22 H joint specimens is increased with a decrease in the applied constant load at 800 oC for both shear and tensile loading modes. The creep strength at 1000 h under shear loading is about one quarter of the shear strength at 800 oC. The tensile creep strength at 1000 h is about 9% of the tensile strength at 800 oC. Failure patterns of both shear and tensile joint specimens are similar regardless of the creep rupture time. Cracks initiate at the interface between the spinel layer and chromate (BaCrO4) layer, penetrate through the BaCrO4 layer, and propagate along the interface between the chromate layer and glass-ceramic substrate until final fracture. Final, fast fracture occasionally takes place within the glass-ceramic layer.
REFERENCES
1. N. Q. Minh, “Solid Oxide Fuel Cell Technology-Features and Applications,” Solid State Ionics, Vol. 174, pp. 271-277, 2004.
2. R. Bove and S. Ubertini, Modeling Solid Oxide Fuel Cells Methods, Procedures and Techniques, 1st Ed., Springer, New York, 2008.
3. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
4. M. Radovic and E. Lara-Curzio, “Mechanical Properties of Tape Cast Nickel-Based Anode Materials for Solid Oxide Fuel Cells Before and After Reduction in Hydrogen,” Acta Materialia, Vol. 52, pp. 5747–5756, 2004.
5. G. Kaur, O. P. Pandey, and K. Singh, “Interfacial Study Between High Temperature SiO2-B2O3-AO-La2O3 (A= Sr, Ba) Glass Seals and Crofer 22APU for Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 37, pp. 6862-6874, 2012.
6. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
7. J. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, New York, USA, 2008.
8. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Effect of La Addition on the Thermal and Crystalline Properties of SiO2-B2O3-Al2O3-BaO Glasses,” Proceedings of the Annual Conference of the Chinese Ceramic Society, 2007 (CD-ROM). (in Chinese)
9. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on a SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting, 2007 (CD-ROM). (in Chinese)
10. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Isothermal Crystallization Properties of SiO2-B2O3-Al2O3-BaO Glass,” Proceedings of the Annual Conference of the Chinese Ceramic Society, 2008 (CD-ROM). (in Chinese)
11. H.-T. Chang, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, National Central University, 2010.
12. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2011.
13. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
14. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
15. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, 2007.
16. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of a Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
17. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, pp. 238-244, 2008.
18. V. A. Haanappel, V. Shemet, I. C. Vinke, and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, pp. 102-107, 2005.
19. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
20. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, pp. 2521-2527, 2008.
21. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.
22. J. Malzbender, J. Monch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, pp. 6297-6301, 2007.
23. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Aluminizing of Cr-Containing Ferritic Alloys on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell Sealing Glass,” Journal of Power Sources, Vol. 185, pp. 1001-1008, 2008.
24. F. Smeacetto, M. Salvo, P. Leone, M. Santarelli, and M. Ferraris, “Performance and Testing of Joined Crofer22APU-Glass-Ceramic Sealant-Anode Supported Cell in SOFC Relevant Conditions,” Materials Letters, Vol. 65, pp. 1048-1052, 2011.
25. J. Mihans, M. Khaleel, X. Sun, and M. Tehrani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol. 195, pp. 3631-3635, 2010.
26. D. W. Richerson, Modern Ceramic Engineering, 2nd Ed., Marcel Dekker, New York, USA, 1992.
27. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 3rd Ed., Prentice Hall, New Jersey, USA, 2007.
28. J. Milhans, D. S. Li, M. Khaleel, X. Sun, M. S. Al-Haik, A. Harris, and H. Garmestani, “Mechanical Properties of Solid Oxide Fuel Cell Glass-Ceramic at High Temperatures,” Journal of Power Sources, Vol. 196, pp. 5599-5603, 2011.
29. J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Determination of the Interfacial Fracture Energies of Cathodes and Glass Ceramic Sealants in a Planar Solid-Oxide Fuel Cell Design,” Journal of Material Research, Vol. 18, pp. 929-934, 2003.
30. “Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature,” ASTM Standard C1499, ASTM International, West Conshohocken, PA, USA, 2008.
31. R. W. Schmitt, K. Blank, and G. Schonbrunn, “Experimentelle Spannungsanalyse zum Doppelringverfahren,” Sprechsaal, Vol. 116, pp. 397-409, 1983. (in German)
32. Y.-T. Chiou and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
33. J.-Y. Chen, “Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2010.
34. G. Fantozzi, J. Chevalier, C. Olagnon, and J. L. Chermant, “Creep of Ceramic Matrix Composites,” pp. 115-162 in Comprehensive Composite Materials, Vol. 4: Carbon/Carbon, Cement, and Ceramic Matrix Composites, edited by A. Kelly, and C. Zweben, Pergamon, Fresno, USA, 2000.
REFERENCES
A1. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” Journal of Applied Mechanicals, Vol. 56, pp. 77-82. 1989.
A2. G. D. Quinn and R. C. Bradt, “On the Vickers Indentation Fracture Toughness Test,” Journal of the American Ceramic Society, Vol. 90, pp. 673-680, 2007.
A3. R. C. Hibbeler, Statics and Mechanics of Materials, SI Ed., Prentice Hall, Singapore, 2004.
A4. J. Malzbender and R. W. Steinbrech, “Mechanical Properties of Coated Materials and Multi-Layered Composites Determined Using Bending Methods,” Surface and Coatings Technology, Vol. 176, pp. 165-172, 2004.
A5. “Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics,” ASTM Standard C1327, ASTM International, West Conshohocken, PA, USA, 2012.
A6. J. H. Gong, “Determining Indentation Toughness by Incorporating True Hardness into Fracture Mechanics Equation,” Journal of the European Ceramic Society, Vol. 19, pp. 1585-1592, 1999.
A7. P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method,” Journal of the American Ceramic Society, Vol. 64, pp. 539-543, 1981.