| 研究生: |
蔡緒孝 Shu-Hsiao Tsai |
|---|---|
| 論文名稱: |
邊射型漸耦合式於1.55μm波長之半導體光放大器與光檢測器單晶片整合 Monolithically Integration of Edge Emission Evanescently Coupled Semiconductor Optical Amplifier and Photodetector at 1.55μm Wavelength |
| 指導教授: |
詹益仁
Yi-Jen Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 光檢測器 、半導體光放大器 、單晶片整合 |
| 外文關鍵詞: | photodetector, semicondoctor optical amplifier, monolithically integration |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對1.55μm波長邊射型漸耦合式半導體光放大器與光檢測器單晶片整合之製作與研究,利用半導體光放大器體積小、積體化佳之特性,在光通訊系統接收端模組中與光檢測器做單晶片整合,入射光訊號經由漸耦合式波導將光功率漸進的導入半導體光放大器,讓光訊號直接做光對光的放大,再經由光性設計與模擬過的光耦合層,將放大後的光信號逐漸耦合至吸收層吸收。在相同製程下可提供半導體光放大器與光檢測器之整合元件與獨立元件。
利用與光檢測器整合之優勢,提出一簡易量測光放大增益之方法,省去一般雙邊耦合量測上光對準之不易與高的光功率損耗,或是其他量測方法需要鍍抗反射膜和開測量窗口等額外製程。我們直接利用整何元件積體化後之優勢,檢視光檢測器之光電流變化量,即可計算出半導體光放大器之增益。本論文為求量產之考量,在製程與量測上皆以降低成本作為考量目標。
我們提供最大光放大增益8.8dB之半導體光放大器,採用伸張應變之多重量子井,可使得半導體光放大器對TE極化以及TM極化之增益差距只有極小之0.12dB,達到對極化非敏感的要求。而在光檢測器的表現上,不論是整合元件或是單一光檢測器在頻寬的表現上皆能超過40 GHz,符合SONET/SDH OC-768的規格。且皆不受偏壓及輸入光功率不同而影響頻寬之表現,達到電荷補償式單載子傳輸光檢測器之設計目標。
This thesis studied the monolithically integration of edge emission evanescently coupled semiconductor optical amplifier and photodetector at 1.55μm wavelength. Due to the smaller size and better integration with other optic electrical device of SOA, it can be integrated in receiver module of optical fiber communication system. Input optical signal passed through the fiber guide and MQW, it can be amplified by stimulation emission of SOA. After signal amplified we design the coupling layer to couple the signal to the absorption layer of photo detector. We can provide the integrated device and the individual device in the same fabrication process.
We can take advantage of the integrated device to provide a simple gain measurement of SOA. It can reduce the optical loss and fiber alignment of conventional measurement or additional process of other ASE gain measurement. We can monitor the difference of photocurrent with different injection current of SOA. This thesis provided the low cost fabrication and measurement system.
We provide the maximum optical gain 8.8dB and the difference of TE mode and TM mode only 0.12dB. It can achieve the polarization insensitive. The performance of detector bandwidth all can achieve the 40GHz and conform to SONET/SDH OC-768.
[1] John Gowar, “Optical Communication Systems”, Prentice Hall, 1993
[2] Gerd Keiser, “Optical Fiber Communications”, McGRAW Hill, 2000
[3] Djafar K. Mynbaev, Lowell L. Scheiner, “Fiber-Optic Communications Technology”, Prentice Hall, 2001
[4] DWDM Performance and Conformance Testing Primer”, ApplicationNote of Tektronix, 2001
[5] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp.709-727, Jul./Aug. 2004.
[6] Hiroshi Ito, Tadao Ishibashi “Ultrafast uni-traveling carrier photodiode,” NTT Photonics Laboratory, Device Research Conference, 2000. Conference Digest. 58th DRC 19-21 June 2000 Page(s):165 – 168
[7] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[8] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition
[9] Das, M.B., “Optoelectronic detectors and receivers: speed and sensitivity limits"Optoelectronic and Microelectronic Materials Devices, 1998. Proceedings. 1998 Conference on14-16 Dec. 1998 Page(s):15 – 22
[10] Donald A. Neamen, “Semiconductor physics Principle,"second edition
[11] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, July/August 2004.
[12] T. Saitoh and T. Mukai, “Recent progress in semiconductor amplifier,” IEEE J. Lightwave Technology, vol.6, no.1pp.1656-1664, 1988.
[13] N. A. Olsson, “Semiconductor optical amplifiers,” Proceedings of the IEEE, vol.80, no.3, pp.375-382, Mar. 1992.
[14] B. Mason, L. L. Buhl, “40 Gbs photonic integrated receiver with -17 dBm sensitivity,” in Tech. Dig. Opt. Fiber Commun. Conf., Anaheim, CA, 2002, Postdeadline Paper FB10.
[15] D. Wake, “A 1550-nm millimeter-wave photodetector with a bandwidth-efficiency product of 2.4 THz,” J. Lightwave Technol., vol. 10, pp. 908–912, July 1992.
[16] F. Xia, J. Wei, V. Menon, and S. R. Forrest, “Monolithic integration of a semiconductor optical amplifier and a high bandwidth p-i-n photodiode using asymmetric twin-waveguide technology,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 3,pp.452-454, 2003
[17] G. P. Agrawal, N. K. Dutta, Long-Wavelength SemiconductorLasers, New York: Van Nostrand Reinhold, 1986. Ch3.
[18] 葉東昆, “1.55um寬頻半導體光放大器研製與分析,” 碩士論文, 國立中山大學, 民國93年。
[19] J. Yu, P. Jeppesen, “Improvement of cascaded semiconductor optical amplifier gates by using holding light injection,” IEEE J. Lightwave Technology, vol.19, no.5, pp.614-623, 2001.
[20] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” IEEE J. Lightwave Technology, vol.6, no. 4, pp. 531-543, Apr. 1988.
[21] G. Eisenstein and L. W. Stulz, “High quality Antireflection Coatings on Laser Facets by Sputtered Silicon Nitride,” Applied Optics, vol.23, no.1, pp.161-164, 1984.
[22] G. Eisenstein and L. W. Stulz, “Antireflection Coatings on Semiconductor Laser Facets using Sputtered Lead Silicate Glass,” Journal of Lightwave Technology, vol. LT -4, no.9, pp. 1373-1375, 1986.
[23] Y. Muramoto, and T. Ishibashi, “InP/InGaAs pin photodiode structure maximising bandwidth and efficiency,” Electron. Lett., vol. 39, pp.1749- 1750, NOV. 2003.
[24] L. A. Coldren and S. W. Corzine, “Diode lasers and photonic integrated circuit,” John Wiley & Sons, Inc., New York, pp.527-536, 1995.
[25] M. Ilegems, “InP-based lattice-matched heterostructures,” in Properties of lattice-matched and strained Indium Gallium Arsenide, edited by Pallab Bhattacharya, INSPEC, IEE, p.19, 1993.
[26] A. ichii, Y. Tsou, and E. Garmire, “An empirical rule for band offsets between III-V alloy compounds,” J. Appl. Phys., vol. 74,pp.2112-2113, 1993.
[27] J. R. Flemish, H. Shen, K. A. Jones, M. Dutta, and V. S. Ban, “Determination of the composition of strained InGaAsP layers on InP substrates using photoreflectance and double-crystal X-ray diffractometry,” J. Appl. Phys., vol. 70,pp.2152-2155, 1991.
[28] B. W. Hakki, and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys., Vol. 46, No. 3, pp.1299-1306, 1975.
[29] C. H. Herny, R. A. Logan, and F. R. Merritt, ”Measurement of gain and absorption in AlGaAs buried heterostructure lasers,” J. Appl. Phys., Vol. 51, No. 3, p3042, 1980.
[30] A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by variable stripe length method with current injection,” Electron. Lett., Vol. 33, No. 4, p864, 1997.
[31] Katsuaki Magari, and Yasuhiro Suzuki, “Novel gain measurement method without optical fiber alignment in a semiconductor optical amplifier,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 16, Nl. 5, 2004.