| 研究生: |
曾景平 Ching-Ping Tseng |
|---|---|
| 論文名稱: | Building A Hospital Phenotypic Disease Network Database |
| 指導教授: | 吳立青 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 系統生物與生物資訊研究所 Graduate Institute of Systems Biology and Bioinformatics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 疾病網路 、共病性 、資料探勘 、電子病歷 、臨床決策支援系統 |
| 外文關鍵詞: | Disease Network, Comorbidity, Data Mining, Electronic Medical Record, Clinical Decision Support Systems |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來人類疾病研究一直為全球生物醫學所關注的議題,許多研究聚焦在基因、蛋白質、藥物及代謝等不同維度建構基因網路、蛋白質與蛋白質間交互作用網路、藥物與蛋白質間交互作用網路、新陳代謝網路及疾病網絡來幫助我們瞭解疾病之間的關係。病歷是病患個人基本資料和就醫診療過程的記錄,利用醫院大量病人長時間就醫紀錄分析不同年齡層下疾病網路的差異性,藉由電子病歷及資料探勘技術所建立的醫院疾病表徵網路資料庫(Hospital Phenotypic Disease Network Database)。透過疾病表徵網路資料庫證明疾病表現與疾病盛行率會因為年齡及性別而有所不同。以建立的醫院疾病表徵網路資料庫據以建立臨床決策支援系統的知識庫,相信對於提高診斷之正確性及治療之最佳化有非常大的幫助,更可提昇醫療照護品質。
In recent years, using network theory to study human disease has been one of the major foci of the biomedical industry, including Gene Networks, Protein-Protein Interactions Network, Drug-Target Network and Metabolic Disease Network. These constructed Networks have helped us to understand the association between various cluster of diseases. The hospital electronic medical record, patient ICD9 codings, can be mined and analysis thus allowing us to constructed a Hospital Phenotypic Disease Network Database. Disease relationships can be queried in terms of gender and age. Disease comorbidities increases with age and also revealed a sexual dimorphic pattern in disease multi-morbidities. The Clinical Decision Support System can be build according by Hospital Phenotypic Disease Network Database can function as a clinical decision supporting system useful in enhancing the accuracy of diagnosis of comorbidities and thus providing timely appropriate treatment, and can improve the quality of healthcare.
[1]、 Feinstein AR. The prc-thcrapcutic classification of co-mor¬bidity in chronic disease. J Chronic Disord 1970;23:455-468.
[2]、 Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol. 2007 Oct;25(10):1110-1.
[3]、 Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. Proc Natl Acad Sci USA 2007;104:8685-8690.
[4]、 Park J, Lee DS, Christakis NA, Barabási AL. The impact of cellular networks on disease comorbidity. Mol Syst Biol. 2009;5:262. Epub 2009 Apr 7.
[5]、 Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of human phenotypes. PLoS Comput Biol. 2009 Apr;5(4):e1000353. Epub 2009 Apr 10.
[6]、 Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124. Epub 2007 Jul 10.
[7]、 Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9880-5. Epub 2008 Jul 3.
[8]、 全民健康保險資料庫 http://nhird.nhri.org.tw/index.php
[9]、 F. S. Roque, P.B. Jensen, H. Schmock, M. Dalgaard, M. Andreatta, T. Hansen, K. S0eby, S. Bredkj^r, A. Juul, T. Werge, L. J. Jensen, and S. Brunak, "Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts," PLoS Computational Biology, vol. 7, e1002141, 2011.
[10]、 Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821–834 (2006).
[11]、 P. B. Jensen, L. J. Jensen, and S. Brunak, "Mining electronic health records: towards better research applications and clinical care," Nature Reviews.Genetics, vol.13, pp. 395-405, 2012.
[12]、 Jimenez-Sanchez, G., Childs, B. & Valle, D. Human disease genes. Nature 409, 853–855 (2001).
[13]、 Iezzoni, L.I., Assessing quality using administrative data. Ann Intern Med, 1997. 127 ( 8 Pt 2 ) : p. 666-74.
[14]、 Katz, A., et al., Can the quality of care in family practice be measured using administrative data? Health Serv Res, 2006. 41(6): p. 2238-54.
[15]、 Wray, N.P., et al., Using administrative databases to evaluate the quality of medical care: a conceptual framework. Soc Sci Med, 1995. 40 (12) : p. 1707-15.
[16]、 Lindsay, M.P., et al., Validation of administrative databases using a registry data source: Implications for research on quality of stroke care. Stroke, 2005. 36 (2) : p. 477.
[17]、 Mencher, S.K. & Wang, L.G. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin. Pharmacol. 5, 3 (2005).
[18]、 Feinstein AR. The prc-thcrapcutic classification of co-mor¬bidity in chronic disease. J Chronic Disord 1970;23:455-468.
[19]、 Ernest M. Gruenberg (1977) The Failures of Success. Milbank Quarterly Volume 83, Issue 4, pages 779–800, December 2005
[20]、 Fries JF. Aging, natural death, and the compression of morbidity. N Engl J Med. 1980 Jul 17;303(3):130–135.
[21]、 Kenneth G. Manton, Changing Concepts of Morbidity and Mortality in the Elderly Population. The Milbank Memorial Fund Quarterly. Health and Society Vol. 60, No. 2 (Spring, 1982), pp. 183-244
[22]、 Zhang J, Iwashyna TJ, Christakis NA (1999) The Performance of Different Lookback Periods and Sources of Information for Charlson Comorbidity Adjustment in Medicare Claims. Medical Care 37: 1128–1139. View Article
[23]、 Cooper GS, Yuan Z, Stange KC, Dennis LK, Amini SB, et al. (1999) The sensitivity of Medicare claims data for case ascertainment of six common cancers. Medical Care 37: 436–44. View Article
[24]、 Lauderdale D, Furner SE, Miles TP, Goldberg J (1993) Epidemiological uses of Medicare data. American Journal of Epidemiology 15: 319–327. View Article