跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴奕蒼
Yi-Cang Lai
論文名稱: 聚苯胺奈米材料的合成及在感測器的應用
The synthesized of polyaniline nano-materials and uesd to sensor
指導教授: 楊思明
Sze-Ming Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 葡萄糖聚苯胺感測器
外文關鍵詞: polyaniline, gold, sensor, glucose
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為二部分,第一部分採用兩步陽極氧化的方式藉由改變電解液、電壓及溫度等參數,成功製成50nm、30nm、20nm、15nm四種孔徑大小的規則氧化鋁膜模板;在不同孔徑的氧化鋁膜模板內合成聚苯胺奈米管/線;藉由SEM及TEM影像分析聚苯胺奈米管/線的形態,以FT-IR和CV對合成的產物進行定性分析,證實在自製氧化鋁膜內所合成出的確實為聚苯胺結構;此外,將導電高分子聚苯胺應用在氣體感測器上,對NO2氣體進行測試並和以界面法合成的聚苯胺奈米纖維做一比較。由實驗結果比較其靈敏度發現,由於聚苯胺管比聚苯胺纖維有較大的表面積,所以反應靈敏度較高;在聚苯胺管方面,孔洞直徑在200nm至50nm範圍氧化鋁膜模板所生成之奈米管,由於直徑較小的奈米管單位重量具有較大的表面積,因此直徑愈小,靈敏度愈高;孔洞直徑在30nm之下的氧化鋁膜模板由於不易生成空心的奈米管,再加上洞口被覆蓋物阻擋,影響NO2的擴散,使得靈敏度反而減小。此外,將合成好的聚苯胺奈米管浸置於HAuCl4溶液中,利用聚苯胺奈米管本身的還原能力將金離子還原,使金沉積在聚苯胺上,由EDX分析確定其為金, mapping分析發現在聚苯胺上分布均勻,並由於金有較佳的導電度,可以幫助電子傳遞,提升感測材料的整體靈敏度。使用結構較大的DBSA取代HCl進行摻雜,發現其再現性頗佳,因此判斷聚苯胺在NO2氧化過程中伴隨著去摻雜作用的發生,而非只是單存的氧化。
    本研究第二部分為以聚苯胺、聚苯胺-金屬修飾白金電極,藉以提升作為葡萄糖感測器之靈敏性、再現性及電流訊號,並由mapping分析觀察各種金屬在聚苯胺上的分佈狀況。從實驗結果分析分析發現就靈敏度及再現性而言:金屬-聚苯胺修飾電極>聚苯胺修飾電極>未經修飾電極;就各種金屬-聚苯胺修飾電極比較,其中銀的電流訊號最佳,金的再現性最好,鈀的靈敏性最好。


    There are two parts in this thesis: firstly, we fabricate ordered anodic alumina membranes(AAO) with uniform pore diameters of 50 nm, 30 nm, 20 nm and 15nm by two-step anodizing process. Then, we synthesize polyaniline nanotubes/wires by electrochemical method within the holes of the AAO membrane. SEM and TEM were used to observe the morphology of the polyaniline nanotubes/wires. FT-IR spectra and CV show that the product synthesized in the channels of AAO membranes is polyaniline. Different structures of polyaniline nanotubes and wires are tested as sensor materials for detecting NO2. The sensitivities of polyaniline nanotubes are higher than nanofibers because of the larger surface area of polyaniline nanotubes. For polyaniline nanotubes, when the tube diameters are between 200nm and 50nm, the sensitivity increases while decreasing diameters of the tube. Since the smaller nanotubes have larger surface area per unit weight. But when the tube diameters are smaller than 30nm, the sensitivity lowered while decreasing diameter. Additionally, polyaniline materials were immersed in HAuCl4 solution, gold was deposited on polyaniline. EDX was used to check the presence of gold and mapping was used to obtain the distribution of gold. The polyaniline/gold sensor has better sensitivity than polyaniline sensor because gold help the transference of electrons. We choose DBSA instead of HCl as dopant, the reproducibility of the sensor is greatly enhanced.
    Secondly, the Pt electrodes for glucose sensor are modified with polianiline and polianiline-metal (palladium, silver, gold). The result shows that both the sensitivity and reproducibility decrease in following order : metal-polyaniline electrode>polyaniline electrode>unmodified electrode. Comparisons of the metal-polyaniline electrodes show that silver-polyaniline has the highest current, gold-polyaniline has the best reproducibility, and palladium –polyaniline has the best sensitivity.

    摘要 Ⅰ Abstract Ⅲ 目錄 Ⅴ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 緒論 1 第二章 文獻回顧 3 2.1 聚苯胺 3 2.1.1 簡介 3 2.1.2 聚苯胺奈米管合成方法 6 2.1.3 聚苯胺的應用 10 2.1.4 聚苯胺性質分析 13 2.2 奈米金屬 17 2.2.1 簡介 17 2.2.2 奈米金屬型態的控制方法及反應機構 19 2.2.3 奈米金屬的應用 21 2.3 葡萄糖感測器 27 第三章 實驗 31 3.1 藥品 31 3.2 儀器 33 3.3 實驗步驟 35 3.3.1 苯胺單體的還原 35 3.3.2 自製多孔性陽極氧化鋁模板(anodic aluminum oxide ,AAO) 35 3.3.3 聚苯胺奈米纖維製備 39 3.3.4 聚苯胺奈米管製備 39 3.3.5 聚苯胺奈米管感測膜的製備 39 3.3.6 聚苯胺還原金沉積的製備 40 3.3.7 感測裝置與感測實驗 40 3.3.8 聚苯胺薄膜電極製備 43 3.3.9 聚苯胺薄膜-鈀電極的製備 43 3.3.10 聚苯胺薄膜-金電極的製備 43 3.3.11 聚苯胺薄膜-銀電極的製備 43 3.3.12 2%Nafion溶液的配置 43 3.3.13 葡萄糖氧化酵素溶液的配置 44 3.3.14 酵素電極的製備 44 3.3.15 葡萄糖生物感測器之電流量測 44 3.4 實驗分析方法 45 3.4.1 場發射掃瞄式電子顯微鏡(Field-Emission Scanning Electron Microscope,FE-SEM) 45 3.4.2 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 45 3.4.3 霍式轉換紅外光譜儀(Fourier Transform-Infrared Spectrophotometer,FT-IR) 45 3.4.4 循環伏安儀(Cyclic Voltammetry,CV) 46 3.4.5 表比面積分析儀 (Accelerated surface area and porosimetry ,ASAP) 46 3.4.6 低真空掃描式電子顯微鏡(Low Vacuum Scanning Electron Microscope,LV-SEM) 47 3.4.7 光電子能譜儀(Auger/ESCA) 47 第四章 結果與討論 48 4.1 實驗室自製各種氧化鋁膜 48 4.2 聚苯胺奈米纖維影像分析 50 4.3 聚苯胺奈米管/柱影像分析 52 4.4 各式結構聚苯胺之紅外光譜分析 55 4.5 奈米感測器之循環伏安分析 58 4.6 以纖維、各種直徑聚苯胺奈米管感測 NO2氣體 60 4.7 改變聚苯胺濃度感測 NO2氣體 64 4.8 聚苯胺奈米管沉積金感測 NO2氣體 65 4.9 聚苯胺感測器的可逆性探討 72 4.10聚苯胺感測器反應機制探討 78 4.11以聚苯胺修飾白金電極 82 4.12金屬-聚苯胺複合材料之SEM分析 84 4.13以金屬-聚苯胺複合材料修飾白金電極 89 第五章 結論 93 第六章 未來展望 95 參考文獻 96

    1. R. M. Baughman, J. L. Bredas, R. L. Elsenbaumer, and L. W. Shacklette, Chem. Rev., 1982, 82, 209.
    2. A. F. Diaz and K. K. Kanazdwd, in “Extended Linear Chain Compounds” (G. S. Miller, ed.), Plenum, New York, 1982, p3.
    3. K. Kaneto, S. Ura, K. Yoshino, and Y. Inuishi, Jap. J. of App. Phys., 1984, 23, 189.
    4. H. Letherby, J. Chem. Soc., 1862, 15, 16.
    5. M. Josefowicz, In: Thesis, University of Paris 1963.
    6. M. Josefowicz, L. T. Yu, J. Perichon, R. Buvet, J. Polym. Sci. C, 1969, 22, 1187.
    7. R. D. Surville, M. Josefowicz, L. T. Yu, J. Perichon, R. Buvet, Elec- trochim. Acta., 1968, 13, 1451.
    8. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
    9. A. G. MacDiarmid, J. C. Chiang, A. F. Richter, A. J. Epstein, Synth. Met.,1987, 18, 285.
    10. A. Ray, G. E. Asturias, D. L. Kershner, A. F. Richter, A. G. MacDiarmid, A. J. Epstein, Synth. Met., 1989, 29, E141.
    11. J. P. Travers, J. Chroboczek, F. Derreux, F. Genoud, M. Nechtscheim, A. M. Sayed, E. M. Genies, C. Tsintavis, Mol. Cryst. Liq. Cryst., 1985, 121, 195.
    12. E. M. Genies, A. M. Sayed, C. Tsintavis, Mol. Cryst. Liq. Cryst., 1985, 121, 181.
    13. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako, J. Elec- troanal. Chem. Interf. Electrochem., 1984, 161, 399.
    14. J. C. Chang, A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
    15. W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc. Faraday Trans. 1986, 82, 2385.
    16. A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97, 2388.
    17. S. S. Pandey, S. Annapoorni, B. D. Malhocra, Macromolecules, 1993, 26, 3190.
    18. W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., 1986, 82, 2385-2400.
    19. J. Huang, R. B. Kaner, Chem. Commun., 2006, 367–376.
    20. M. Delvaux, J. Duchet, P.Y. Stavaux, R. Legras, D. C. Sophie, Synthetic Metals, 2000, 113, 275–280.
    21. C. R. Martin, Science, 1994, 266, 1961–1966.
    22. B. L. Brinda, K. D. Peter, R. M. Charles, Chem. Mater., 1997, 9, 857–862.
    23. W. Liang, C. R. Martin, J. Am. Chem. Soc., 1990, 112, 9666.
    24. M. Tagowska, B. Palys, K. Jackowska, Synth. Met., 2004, 142, 223-239.
    25. M. Delvaux, J. Duchet, P. Y. Stavaux, R. Legras, S. D. Champagne, Synth. Met., 2000, 113, 223-239.
    26. S. Xiong, Q. Wang, H. Xia, Materials Research Bulletin, 2004, 39, 1569-1580.
    27. L. Dauginet-De Pra, S. Demoustier-Champagne, Thin Solid Films., 2005, 479, 321-328.
    28. J. Huang, Y. Shen, M. Wan, Synth. Met., 1999, 101, 708-711.
    29. Z. Wei, Z. Zhang, M. Wan, Macromolecules, 2002, 35, 5937-5942.
    30. Y. Yang, M. Wan, J. Mater. Chem., 2002, 12, 897-901.
    31. L. Zhang, M. Wan, Adv. Funct. Mater., 2003, 10, 815-820.
    32. L. Zhang, Y. Long, Z. Chen, M. Wan, Adv. Funct. Mater., 2004, 7, 693-697.
    33. L. Zhang, M. Wan, Thin Solid Films., 2005, 477, 24-31.
    34. R. Racicot, R. Brown, S. C. Yang, Synth. Met. , 1997, 85, 1263.
    35. P. J. Kin, D. C. Silverman, C. R. Jeffreys, Synth. Met. 1997, 85, 1327.
    36. M. C. Bernard, H. L. Goff, S. Joiret, N. N. Dinh, N. N. Toan, Electrochem Soc, 1999, 146, 995.
    37. B. Wessling, Posdorfer, J. Electrochim Acta, 1999, 44, 2139.
    38. M. A. Malik, M. T. Galkowski, H. Bala, B. Grzybowska, P. Kulesza, J. Electrochim Acta, 1999, 44, 2157.
    39. C. Li, Y. Wang, M. Wan, S. Li, Synth. Met. , 1991, 39, 90.
    40. M. Ozaki, D. L. Peebles, B. R. Weinberger, Hegger; A. J. MacDiarmid, A. G., J. Appl. Phys., 1980, 51, 4252.
    41. C. T. Kuo, W. H. Chiou, , Synth. Met. , 1997, 88, 23.
    42. H. L. Wang, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, A. J. Epstein, , Synth. Met. , 1996, 78, 33.
    43. Y. Z. Wang, D. D. Gebler, L. B. Lin, J. W. Blatchford, S. W. Jessen, H. L. Wang, A. J. Epstein, Appl. Phys. Lett. , 1996, 68, 894.
    44. S. A. Chen, K. R. Chuang, C. I. Chao, H. T. Lee, Synth. Met. , 1996, 82, 207.
    45. N. P.Gaponik, D. V. Talapin, Dmitri, V.; Rogach, A. L., Phys. Chem Chem. Phys., 1999, 1, 1787.
    46. C. Barbero, M. C.Miras, R. Koetz, O. Haas, Synth. Met. , 1993, 55, 1539.
    47. H. Tsutsumi, S. Yamashita, T. Oishi, Synth. Met. , 1997, 85, 1361.
    48. G. Kumar, A. Sivashanmugam, N. Muniyandi, S. K. Dhawan, Synth. Met. , 1996, 80, 279.
    49. N. Kobayashi, K. Yamada, R. Hirohashi, Electrochim. Acta. , 1992, 37, 2101.
    50. M. Morita, Poly. Sci., Part B: Polymer Phys., 1994, 32, 231.
    51. M. C. Bernard, H. L. Goff, Z. Wen, ,Synth. Met. , 1997, 85, 1347.
    52. M. C. Bernard, H. L. Goff, V. T. Bich, A. Z. Wen, Synth. Met. , 1996, 81, 215.
    53. A. J. Epstein, Yue, J. US Patent no. 5137991, 1992.
    54. J. Joo, A. J. Epstein, Appl Phys Lett, 1994, 65, 2278.
    55. T. Makela, S. Pienimaa, T. Taka, S. Jussila, H. Isotalo, Synth. Met. 1997, 85, 1335.
    56. X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao and Y. Q. Mao, J. Mater. Chem., 2001, 11, 1732.
    57. X. Y. Yuan, G. S. Wu, T. Xie, B. Y. Geng, Y. Lin, G. W. Meng, L. D. Zhang, Solid State Sciences, 2004, 6, 735.
    58. Z. Wen-Bo, Z. Jun-Jie, C. Hong-Yuan, Journal of Crystal Growth, 2003, 258, 176.
    59. X. Younan, J. Halas Naomi, Guest Editors, MRS BULLETIN, 2005, 30, 338.
    60. Y. Chia-min, S.Hwo-shuenn and C.Kuei-jung , Adv. Funct. Mater., 2002, 2, 143.
    61. J. M. Catherine, K. S. Tapan, Anand Gole and Christopher J. Orendorff, MRS BULLETIN, 2005, 30, 349.
    62. W. Benjamin, S. Yugang, C. Jingyi, C. Hu, L. Zhi-Yuan , L. Xingde and X.Younan , MRS BULLETIN, 2005, 30, 356.
    63. T. Y. Tseng and J. C. Lin, IEEE Trans. on Magnetics, 1989, 25, 4405.
    64. T. Y. Tseng and J. J. Yu, J. Mater. Sci., 1986, 21, 3615.
    65. K. P. Jayadeven and T. Y. Tseng, Encyclopedia of nanoscience & nanotechnology, edited by H. S. Nalwa, Am. Sci. Publisher, 2004, 8, 333.
    66.李斯毅、李佳穎、曾俊元,奈米材料的製程及潛在的應用,物理雙月刊,2004.
    67. T. Y. Tseng, Ferroelectrics, 1999, 232, 881.
    68. C. Y. Liu, H. T. Lue, and T. Y. Tseng, Appl. Phys. Lett., 2002, 81, 4416.
    69. M. Nayak, S. Ezhilvalavan and T. Y. Tseng, Thin Film Materials, 2002, 3, 99.
    70. J. M. S. Cabral and J. F. Kennedy ,“Covalent and coordination immobilized of proteins”Protein Immobilization: Research, Developments and Applications, ed R.F. Taylor(New York;Dekker), 1991, 73-183.
    71. R.F. Taylor,“Development and applications of antibody- and receptor-based biosensors”Bioinstrumentation: Research, Developments and Applications, ed D. L. Wise (Boston,MA;Butterworths), 355-412.
    72. E. Tamiya, Y. Siura, A. Akiyama and I. Karube,“Ultramicro-H2O2 electrode for fabrication of the in vivo biosensor”Ann. NY Acad. Sci, 1990, 613, 396-400.
    73. N. A. Surridge, E. R. Debold, J. Chang and G. W.Neudeck,“Electron-transport rates in an enzyme electrode for glucose”
    Diagnostic Biosensors Polymers ed A. M. Usmani and N. Akmal,
    47-70.
    74. W. Joseph, L. Jie, C. Liang, L. Fang,“Highly Selective Membrance-Free,Mediator-Free Glucose Biosensor”,Anal. Chem, 1994., 66,3600-3603.

    QR CODE
    :::