跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱羽君
Yu-Jiun Chiu
論文名稱: 約瑟夫森參數放大器之量測流程整合與特性分析
指導教授: 陳永富
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 68
中文關鍵詞: Josephson 參數放大器LabVIEWPython 擬合集總元件式結構
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出並實現了一種集總元件式參數放大器(Lumped-Element Josephson, LJPA),並建立完整的自動化量測與資料分析流程以驗證其性能。結合 LabVIEW 與 Python 平台,系統可自動掃描磁通偏壓與幫浦功率,同步分析反射參數 $S_{21}$ 並擬合共振頻率對磁通的變化,以萃取零磁通電流 ($I_{\text{zero,flux}}$) 與磁通電流週期性($I_{periodicity}$)等參數。量測結果顯示,本研究所製作之 LJPA 於幫浦頻率 11.2–11.9 GHz、磁通偏壓 0.33–0.45 $\Phi_0$ 範圍內表現最佳,增益可達 25 dB,頻寬約 100–200 MHz,具穩定且可重現之放大特性。進一步透過條件分析模組($\text{Gain} > 18~\text{dB}$、$\text{BW} > 0.03~\text{GHz}$ ),能自動辨識可操作區域並執行細部掃描,以鎖定最佳操作點。本研究成功建立 LJPA 操作參數搜尋量測與分析流程,不僅提升操作效率與資料準確性,也驗證集總式設計在高增益與寬頻放大應用上的潛力。


    This study presents the design and characterization of a lumped-element Josephson Parametric Amplifier (LJPA) and establishes a fully automated measurement and analysis framework. By integrating LabVIEW and Python, the system automatically scans flux bias and pump power, analyzes reflection data ($S_{21}$), and extracts key parameters such as the zero-flux current ($I_{\text{zero,flux}}$) and flux current periodicity.

    Experimental results show that the LJPA exhibits optimal performance at pump frequencies of 11.2–11.9 GHz and flux bias between 0.33–0.45 $\Phi_0$, achieving up to 25 dB gain and 100–200 MHz bandwidth with stable and reproducible behavior. A conditional analysis module ($\text{Gain} > 18~\text{dB}$, $\text{Bandwidth} > 0.03~\text{GHz}$ ) further identifies the optimal operation region for precise tuning.

    This study successfully established a complete measurement and analysis workflow for searching the operating parameters of LJPA, which not only improves operational efficiency and data accuracy but also verifies the potential of the lumped-element design for achieving high gain and wideband amplification applications.

    Abstract i 目錄 ii 圖目錄 iv 1 序諭 1 2 約瑟夫森參數放大器理論 3 2.1 參數放大器原理與放大器結構 3 2.2 約瑟夫森效應 5 2.3 超導量子干渉SQUID磁通調變原理 6 2.3.1 SQUID結構的有效臨界電流 6 2.3.2 約瑟夫森接面的等效電感 6 2.3.3 LC共振頻率公式 7 2.3.4 磁通調變下的共振頻率週期性應用 7 2.4 約瑟夫森參數放大器量測特性簡介 8 2.5 約瑟夫森參數放大器增益與頻寬特性 10 2.6 操作參數選擇原則與理論基礎 12 3 LabVIEW設計與實驗架設 16 3.1 LabVIEW程式簡介 16 3.2 實驗裝置與硬體架設 17 3.2.1 低溫配線設置 18 3.2.2 輸入訊號線 20 3.2.3 輸出訊號線 20 3.2.4 幫浦訊線與直流偏壓線 20 3.3 LabVIEW 量測程式流程設計與實驗 20 3.3.1 Flux Dependence 量測模設計 22 3.3.2 磁通標定與頻率對應分析組 28 3.3.3 操作參數搜尋量測模組 30 4 實驗結果與討論 40 4.1 實驗條件與量測參數設定 40 4.2 Flux Dependence量测結果 41 4.3 Python 擬合輿 LabVIEW 參數驗流程 43 4.4 操作參數搜尋量測結果與分析 44 4.4.1 增益(Gain)二維分布 45 4.4.2 頻寬(Bandwidth)二維分布 46 4.5 條件分析與細部搜尋結果 49 4.5.1 10.7 GHz 49 4.5.2 11.2 GHz 50 4.5.3 11.9 GHz 50 4.5.4 12.6 GHz 50 4.5.5 不同幫浦頻率之最佳幫浦功率增益頻譜比較 53 4.6 LJPA操作參數整合分析與趨勢討論 54 5 結論 57 參考文獻 59

    [1] Z. R. Lin, K. Inomata, W. Oliver, K. Koshino, Y. Nakamura, J. S. Tsai, T. Yamamoto. Single-shot readout of a superconducting flux qubit with a flux-driven josephson parametric amplifier. Applied Physics Letters, 103:132602,2013.
    [2] S. Uchaikin, J. Kim, C. Kutlu, B. Ivanov. Josephson parametric amplifer based quantum noise limited amplifier development for axion search experiments in capp. Frontiers in Physics, 12:1437680, 2024.
    [3] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y.Nakamura, J. S. Tsai. Flux-driven josephson parametric amplifer. Applied Physics Letters, 93:042510, 2008.
    [4] T. Elo, T.S. Abhilash, M. R. Perelshtein, I Lilja, E. V. Korostylev, P. J.Hakonen. Broadband lumped-element josephson parametric amplifier with single-step lithography. Applied Physics Letters, 112:252601, 2018.
    [5] J. Y. Mtus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, others. Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip fux bias line. Applied Physics Letters, 103:122602, 2013.
    [6] T. W. Hu. Realization and characterization of a lumped-element josephson parametric amplifier. Master's thesis, National Central University, 2025.
    [7] R. Kaufman, T. White, M. I. Dykman, A. Iorio, G. Sterling, S. Hong, A. Opremcak, A. Bengtsson, L. Faoro, J. C. Bardin, T. Burger, R. Gasca, O. Naaman. Josephson parametric amplifier with chebyshev gain profle and high saturation. Physical Review Applied, 20:054058, 2023.
    [8] C. Eichler , A. Wallraff. Controlling the dynamic range of a josephson parametric amplifer. EPJ Quantum Technology, 2014.
    [9] D. Arweiler. Multi-squid josephson parametric amplifiers. Master's thesis, Technical University of Munich, 2018. Master's Thesis.
    [10] T. C. White, J. Y. Mutus, I-C Hoi, R. Barends, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, others. Traveling wave parametric amplifier with josephson junctions using minimal resonator phase matching, Applied Physics Letters, 106:242601, 2015.
    [11] Y. Kim, J. Jeong, S. Youn, S. Bae, A. F.van Loo, Y. Nakamura, S. Uchaikin, Y. K. Semertzidis. Parameter optimization of josephson parametric amplifiers us-
    ing a heuristic search algorithm for axion haloscope search. Electronics, 13:212712127, 2024.
    [12] Keysight Technologies. S-parameter measurements: Basics for high-speed digital engineers. Technical report, Keysight Technologies, 2019.
    [13] R. Yang, H. Deng. Fabrication of the impedance-matched Josephson parametric ampliffer and the study of the gain profile. arXiu preprint, 1909.00707, 2019.
    [14] National Instruments. What is labview?, 2023.

    無法下載圖示

    QR CODE
    :::