| 研究生: |
陳柏春 Chung-po Chen |
|---|---|
| 論文名稱: |
不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討 Location of droplet formation and water distribution for the various types of flow field designs of PEMFC |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 質子交換膜 、燃料電池 、流道設計 、暫態行為 、流道可視化 |
| 外文關鍵詞: | PEM, Fuel cell, Flow field, Visualization, Transient |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉由實驗方法,利用燃料電池測試系統及以Gore 5621為主體之膜電極組來進行單電池實驗測試分析,研究中我們主要針對在固定開孔率條件下探測不同流場設計對電池特性之影響;在實驗設定上分別探討電池內部自發性生成液態水、改變陰極流速對電池性能影響、陰極加濕與否及電池瞬間負載變化之暫態行為。
由實驗結果可以發現,單蛇、指叉及雙指叉型流道因不同流道設計下,其內部生成水區域分布亦有所差異,其中以雙指叉流道設計擁有均勻性分布而電池性能亦較佳。於電池溫度60oC陰陽極加濕溫度90oC設定條件下,改變陰極流速對於此三種流道設計之電池放電過程皆有性能提升現象。於低溫系統下探討陰極加濕對於單蛇型與雙指叉型流道放電效應具有增進效果,但於指叉型流道卻因本流場設計上在氣流導通方面無前兩者有效分布導致電池性能上無明顯差異。最後於電池暫態切換反應下,可以發現雙指叉型流道擁有較佳的電流增益值,相對地於電位轉換所需切換時間亦較遲緩。由此上結論可知,於此三種流道設計上雙指叉型流道擁有較佳的電池性能特性,原因歸為此流場設計可獲得較均勻之反應氣體分布及具有良好的對流質傳模式。
The purpose of this study is to investigate the effect of flow field design on the performance of PEMFC with fixed open ratio flow fields. Gore 5621 is used in this work. Experiments include the visualization of the droplets formation from cell reaction, effects of cathode flow rate on the water formation and transport, and the transient response of the cell to sudden load change.
The results show that the location of droplet formation and water distribution are different for the various types of flow field designs. The double inter-digitated flow field (DIFF) has the most uniform water distribution and best cell performance among the three flow field designs. For cell temperature of 60oC and humidification temperature of 90oC, cell performances of all three flow fields are enhanced by increasing the cathode flow rate. For low cell temperature cases, cathodic humidification increases cell performance for serpentine flow field (SFF) and DIFF, but not for the interdigitated flow field (IFF). For the transient analysis, results show that DIFF has better current gain but longer response time.
In summary, the cell performance of DIFF is the best of the three flow field designs due to more uniform reactant gas distribution and the convective mass transfer effect.
1.Y.G. Yoon, W.Y. Lee, G.G. Park, T.H. Yang, C.S. Kim, “Effects of channel and rib widths of flow field plates on the performance of a PEMFC,?International Journal of Hydrogen Energy, 30, 1363-1366, 2005.
2.S. Shimpalee, S. Greenway, J.W. Zee, “The impact of channel path length on PEMFC flow-field design,?Journal of Power Source, 160, 98-406 , 2006
3.羅世坤,“流場設計對質子交換膜燃料電池性能之研究,” 國立中央大學機械研究所碩士論文,桃園,2003。
4.蒲瑞台,“定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響,” 國立中央大學能源工程研究所碩士論文,桃園,2007。
5.Q. Yan, H. Toghiani, J. Wu, “ Investigation of water transport through membrane in a PEM fuel cell by water balance experiments,?Journal of Power Sources, 158 , 316–325, 2006.
6.T.J. Freire, E.R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells,?Journal of Electroanalytical Chemistry, 503, 57–68, 2001.
7.A. Theodorakakos, T. Ous, M. Gavaises, J.M. Nouri, N. Nikolopoulos, H. Yanagihara, “Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells,?Journal of Colloid and Interface Science, 300, 673-687, 2006.
8.R. Eckl, W. Zehtnera, C. Leub, U. Wagner, “Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack,?Journal of Power Sources, 138, 137-144, 2004.
9.S.U. Jeong, E.A. Cho, H.J. Kim, T.H. Lim, I.H. Oh, S.H. Kim, “A study on cathode structure and water transport in air-breathing PEM fuel cells,?Journal of Power Sources, 159, 1089-1094, 2006.
10.F.Y. Zhang, X.G. Yang, C.Y. Wang, “Liquid Water Removal from a Polymer Electrolyte Fuel Cell,?Journal of The Electrochemical Society, 153 (2), A225-A232 , 2006.
11.N. Rajalakshmi, T.T. Jayanth, R. Thangamuthu, G. Sasikumar, P. Sridhar, K.S. Dhathathreyan, “Water transport characteristics of polymer electrolyte membrane fuel cell,?International Journal of Hydrogen Energy, 29, 1009 -1014, 2004.
12.K.H. Choi, D.H. Peck, C.S. Kim, D.R. Shin, T.H Lee, “Water transport in polymer membranes for PEMFC ,?Journal of Power Sources, 86,197-201, 2000.
13.B. Yang, Y.Z. Fu, A. Manthiram,“ Operation of thin Nafion-based self-humidifying membranes in proton exchange membrane fuel cells with dry H2 and O2,?Journal of Power Sources, 139, 170-175, 2005.
14.M. Sakai, J.H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, and A. Nakajima, “Direct Observation of Internal Fluidity in a Water Droplet during sliding on hydrophobic surfaces,?Langmuir, 22, 4906-4909, 2006.
15.A. Taniguchi, K. Yasuda, “Highly water-proof coating of gas flow channels by plasma polymerization for PEM fuel cells,?Journal of Power Sources, 141, 8-12, 2005.
16.K. Tuber, D. Pocza, C. Hebling, “Visualization of water buildup in the cathode of a transparent PEM fuel cell,” Journal of Power Sources, 124, 403-414, 2003.
17.X. Liu, H. Guo, C. Ma, “Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells ,” Journal of Power Sources, 156, 267-280, 2006.
18.K. Sugiura, M. Nakata, T. Yodo, Y. Nishiguchi, M. Yamauchi, Y. Itoh, “Evaluation of a cathode gas channel with a water absorption layer/waste channel in a PEFC by using visualization technique ,” Journal of Power Sources, 145, 526-533, 2005.
19.F.B. Weng, Ay Su, C.Y. Hsu, C.Y. Lee, “Study of water-flooding behavior in cathode channel of a transparent proton-exchanger membrane fuel cell,” Journal of Power Sources, 157, 674-680, 2006.
20.H.P. Ma , H.M. Zhang , J. Hu, Y.H. Cai , B.L. Yi, “Diagnostic tool to detect liquid water removal in the cathode channels of proton exchange membrane fuel cells,” Journal of Power Sources, 162, 469-473, 2006.
21.A. Theodorakakos, T. Ous, M. Gavaises , J.M. Nouri , N. ikolopoulos , H. Yanagihara, “Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells,” Journal of Colloid and Interface Science, 300, 673-687, 2006.
22.D. Spernjak, A.K. Prasad, S.G. Advani, “Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell,” Journal of Power Sources, 170, 334-344, 2007.
23.T. Ous, C. Arcoumanis, “Visualisation of water droplets during the operation of PEM fuel cells,” Journal of Power Sources, 173, 137-148, 2007.
24.T. Murahashi, H. Kobayashi, E. Nishiyama, “Combined measurement of PEMFC performance decay and water droplet distribution under low humidity and high CO,” Journal of Power Sources, 175, 98-105, 2008.
25.H. Masuda1, K. Ito , T. Oshima, K. Sasaki, “Comparison between numerical simulation and visualization experiment on water behavior in single straight flow channel polymer electrolyte fuel cells,” Journal of Power Sources, 177, 303-313, 2008.
26.C.Y. Wen, G.W. Huang, “Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell,” Journal of Power Sources, 178, 132-140, 2008.
27.X. Liu, H. Guo, F. Ye, C.F. MaFlow, “Dynamic characteristics in flow field of proton exchange membrane fuel cells,” International journal of hydrogen energy, in press, 2008.
28.R. Satija, D.L. Jacobson, M. Arif, S.A. Werner, “In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells,” Journal of Power Sources, 129, 238-245, 2004.
29.A Hakenjos, H. Muenter, U. Wittstadt, C. Hebling, “A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding,” Journal of Power Sources, 131, 213–216, 2004.
30.D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, G.G. Scherer, “In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging Part A. Experimental, data treatment, and quantification,” Electrochimica Acta, 50, 2603–2614, 2005.
31.N. Pekula, K. Heller, P.A. Chuang, A. Turhan, M.M. Mench, J.S. Brenizer , K. Unlu, “Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging,” Nuclear Instruments and Methods in Physics Research, 542(A), 134–141, 2005.
32.A. Turhan, K. Heller, J.S. Brenizer, M.M. Mench, “Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging,” Journal of Power Sources, 160, 1195–1203, 2006.
33.M.A. Hickner, N.P. Siegel, K.S. Chen, D.N. McBrayer, D.S. Hussey, D.L. Jacobson, and M. Arif, “Real-Time Imaging of Liquid Water in an Operating Proton Exchange Membrane Fuel Cell,” Journal of The Electrochemical Society, 153, A902-A908, 2006.
34.Y.S. Chen, Huei Peng , D.S. Hussey, D.L. Jacobson, D.T. Tran , T.A. Baset , M. Biernack, “Water distribution measurement for a PEMFC through neutron radiography,” Journal of Power Sources, 170, 376-386, 2007.
35.J.P. Owejana, T.A. Trabold, D.L. Jacobson, M. Arif, S.G. Kandlikar, “Effects of flowfield and diffusion layer properties on water accumulation in a PEM fuel cell,” International Journal of Hydrogen Energy, 32, 4489-4502, 2007.
36.F. Barreras, A. Lozano, L. Vali˜no, C. Mar´ın, A. Pascau,” Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies,” Journal of Power Sources, 144, 54-66, 2005.
37.F. Barreras, A. Lozano, L. Vali˜no, R. Mustata, C. Mar´ın,” Fluid dynamics performance of different bipolar plates Part I. Velocity and pressure fields,” Journal of Power Sources, 175, 841-850, 2007.
38.X. Zhu, P.C. Sui , N. Djilali ,”Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel,” Journal of Power Sources, 172, 287-295, 2007.
39.T. Metz, N. Paust, C. Muller, R. Zengerle, P. Koltay ,”Passive water removal in fuel cells by capillary droplet actuation,”Sensors and Aatuator A, in press, 2007.
40.黃永達, ”信號與系統” , 東華書局, 中華民國96年6月, pp. 1~77
41.S. Kim, S. Shimpalee, J.W.V. Zee, ”The effect of stoichiometry on dynamic behavior of a proton exchange membrane fuel cell (PEMFC) during load change,” Journal of Power Sources, 135, 110-121, 2004.