| 研究生: |
張博凱 Po-Kai Chang |
|---|---|
| 論文名稱: |
以數值模擬分析狹縫型虛擬衝擊器之效能 A CFD Study of Effects of Flow and Geometrical Parameters on Slit Virtual Impactor Performance |
| 指導教授: |
蕭大智
Ta-Chih Hsiao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 數值模擬 、COMSOL 、狹縫型虛擬衝擊器 、史托克數 |
| 外文關鍵詞: | CFD, COMSOL, Slit virtual impactor, Stokes number |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用數值模擬軟體COMSOL Multiphysics分析現有的虛擬衝擊器,在不同流量與不同構形下的濃縮效能。不同流量的影響分為進氣流量的影響與次要流比的影響,不同構形的影響分為漸縮區與收集口管壁影響。由模擬結果得知,進氣流量與截取粒徑呈反比,當進氣流量為13 LPM時,截取粒徑為1.4 μm;當進氣流量為400 LPM時,截取粒徑為0.2 μm,而無論進氣流量大小,Stk50^0.5皆為0.8,可達到的最高濃縮倍率也都為9.5倍。另外,由於漸縮區的關係,會使微粒具有橫向慣性,造成約在Stk50^0.5為1.9時,微粒會發生交錯現象,並沉積在收集口管壁,因此大粒徑的濃縮倍率會下降。在不同的進氣流量下,無論是截取粒徑,或最高濃縮倍率可濃縮的粒徑範圍皆可用史托克數預測。次要流比同樣也與截取粒徑呈反比,次要流比為0.05時,截取粒徑為0.63 μm;次要流比為0.4時,截取粒徑為0.21 μm。由於濃縮倍率與次要流比呈反比,因此在次要流比為0.05與0.4時,可達到的最高濃縮倍率分別為18.0與2.5倍。由於原始的史托克數公式,無法用來預測不同次要流比的截取粒徑,因此本研究提出新的史托克數公式,其在公式中,加入次要流比r的影響,藉此用來預測不同次要流比下的截取粒徑,並且也經由實驗數據證明的此公式的可行性。在構形的影響的部分,將漸縮區由斜面漸縮改為弧口漸縮後,其降低橫向的慣性,延緩微粒交錯現象,但截取粒徑與截取粒徑的損失卻會增加,而將收集口管壁改為漸擴構形時,可在截取粒徑不變的情況下,降低截取粒徑與大微粒的損失,提高濃縮倍率。藉由以上四種流量與構形的分析,可依據虛擬衝擊器使用功能的不同,分析最佳的流量與構形組合。
The virtual impactor was well known as it could avoid particle bounce and overloading typically encountered with inertial impactors. In this study, the flow field and particle trajectory in a slit type virtual impactor was simulated numerically by a commercial Computational Fluid Dynamics (CFD) software (COMSOL Multiphysics v.4.3b). Effects of flow and slit geometry, including the total flow (Qin), the ratio of minor to total flow (r), the taper slip nozzle (45⁰ chamfer lip and arc lip) and the collection probe configuration (straight and divergent), were investigated. The performance parameters for evaluating the performance were the collection efficiency (CE), the particle loss, the cutoff size (d50), and the concentrating factor (CF). The results show that the d50 is strongly depending on either Qin or r. For instance, the d50 could be reduced form 1.4 μm to 0.2 μm as Qin increased from 13 LPM to 400 LPM at r = 0.1. When Qin was fixed at 80 LPM, the d50 will decrease from 0.63 μm to 0.21 μm as minor flow ratio increasing from 0.05 to 0.4. In addition, a new modified Stokes number for virtual impactor to include the effect of r was proposed. It was further found the square root of this modified Stokes number was retained at about 0.9 under different Qin or r, which can be considered as the characteristic performance parameter for this slit type virtual impactor. On the other hand, the numerical simulation results show particle loss would increase when Stk^0.5 lager than 1.9 due to the particle crossing phenomenon. The particle crossing in acceleration nozzle caused particle deposit on collection probe and CF would decreased. In geometry analysis, the gradual curving lip could postpone particle crossing and decrease the internal loss of larger particles, but the particle loss near cutoff size was increased. Moreover, the divergent probe could decrease the particle loss near the d50 and collection probe. At last, the preliminary experimental tests were conducted to validate the numerical simulation results.
1. Pope III, C.A., et al., Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. The Journal of the American Medical Association, 2002. 287(9): p. 1132-1141.
2. Englert, N., Fine Particles and Human Health—A Review of Epidemiological Studies. Toxicology Letters, 2004. 149(1–3): p. 235-242.
3. Cocheo, C., P. Sacco, and L. Zaratin, Assessment of Human Exposure to Air Pollution, in Encyclopedia of Environmental Health, O.N. Editor-in-Chief: Jerome, Editor. 2011, Elsevier: Burlington. p. 230-237.
4. Bernstein, J.A., et al., Health Effects of Air Pollution. Journal of Allergy and Clinical Immunology, 2004. 114(5): p. 1116-1123.
5. Brunekreef, B. and S.T. Holgate, Air Pollution and Health. The Lancet, 2002. 360(9341): p. 1233-1242.
6. Weber, R.J., et al., A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition. Aerosol Science and Technology, 2001. 35(3): p. 718-727.
7. Alleman, L.Y., et al., PM10 Metal Concentrations and Source Identification Using Positive Matrix Factorization and Wind Sectoring in a French Industrial Zone. Atmospheric Research, 2010. 96(4): p. 612-625.
8. Khan, M.F., K. Hirano, and S. Masunaga, Quantifying the Sources of Hazardous Elements of Suspended Particulate Matter Aerosol Collected in Yokohama, Japan. Atmospheric Environment, 2010. 44(21–22): p. 2646-2657.
9. Kim, H.T., et al., Experimental Study of Small Virtual Cyclones as Particle Concentrators. Journal of Aerosol Science, 2002. 33(5): p. 721-733.
10. Lim, K.S., et al., Particle Collection and Concentration for Cyclone Concentrators. Aerosol Science and Technology, 2005. 39(2): p. 113-123.
11. Marple, V.A. and K. Willeke, Impactor design. Atmospheric Environment (1967), 1976. 10(10): p. 891-896.
12. Hering, S.V., R.C. Flagan, and S.K. Friedlander, Design and Evaluation of New Low-Pressure Impactor. I. Environmental Science & Technology, 1978. 12(6): p. 667-673.
13. Hering, S.V., et al., Design and Evaluation of a New Low-Pressure Impactor. 2. Environmental Science & Technology, 1979. 13(2): p. 184-188.
14. Rao, A.K. and K.T. Whitby, Non-Ideal Collection Characteristics of Inertial Impactors—I. Single-Stage Impactors and Solid Particles. Journal of Aerosol Science, 1978. 9(2): p. 77-86.
15. Conner, W.D., An Inertial-Type Particle Separator for Collecting Large Samples. Journal of the Air Pollution Control Association, 1966. 16(1): p. 35-38.
16. Barr, E.B., et al., Aerosol Concentrator Design, Construction, Calibration, and Use. Aerosol Science and Technology, 1983. 2(4): p. 437-442.
17. Wu, J.J., D.W. Cooper, and R.J. Miller, Virtual Impactor Aerosol Concentrator for Cleanroom Monitoring. The Journal of Environmental Sciences, 1989. 32(4): p. 52-56.
18. Sioutas, C., et al., Development and Evaluation of a Prototype Ambient Particle Concentrator for Inhalation Exposure Studies. Inhalation Toxicology, 1995. 7(5): p. 633-644.
19. Sioutas, C., S. Kim, and M. Chang, Development and Evaluation of a Prototype Ultrafine Particle Concentrator. Journal of Aerosol Science, 1999. 30(8): p. 1001-1017.
20. Kim, D.S., M.C. Kim, and K.W. Lee, Design and Performance Evaluation of Multi-Nozzle Virtual Impactors for Concentrating Particles. Particle & Particle Systems Characterization, 2000. 17(5-6): p. 244-250.
21. Ding, Y., et al., Development of a High Volume Slit Nozzle Virtual Impactor to Concentrate Coarse Particles. Aerosol Science and Technology, 2001. 34(3): p. 274-283.
22. Haglund, J.S., S. Chandra, and A.R. McFarland, Evaluation of a High Volume Aerosol Concentrator. Aerosol Science and Technology, 2002. 36(6): p. 690-696.
23. Romay, F.J., et al., A High-Performance Aerosol Concentrator for Biological Agent Detection. Aerosol Science and Technology, 2002. 36(2): p. 217-226.
24. Sioutas, C., P. Koutrakis, and R.M. Burton, A Technique to Expose Animals to Concentrated Fine Ambient Aerosols. Environmental Health Perspectives, 1995. 103(2): p. 172-177.
25. Solomon, P.A., J.L. Moyers, and R.A. Fletcher, High-Volume Dichotomous Virtual Impactor for the Fractionation and Collection of Particles According to Aerodynamic Size. Aerosol Science and Technology, 1983. 2(4): p. 455-464.
26. Fu, X.K., et al., New Size Sorting Technology for Superconducting Powders. Applied Superconductivity, IEEE Transactions on, 2003. 13(2): p. 3494-3497.
27. Chen, B.T., H.C. Yeh, and M.A. Rivero, Use of Two Virtual Impactors in Series as an Aerosol Generator. Journal of Aerosol Science, 1988. 19(1): p. 137-146.
28. Ding, Y., Y. Pang, and D.J. Eatough, High-Volume Diffusion Denuder Sampler for the Routine Monitoring of Fine Particulate Matter: I. Design and Optimization of the PC-BOSS. Aerosol Science and Technology, 2002. 36(4): p. 369-382.
29. Chen, B.T., H.C. Yeh, and Y.S. Cheng, A Novel Virtual Impactor: Calibration and Use. Journal of Aerosol Science, 1985. 16(4): p. 343-354.
30. Xu, X., A Study of Virtual Impactor. University of Minnesota, Minneapolis, 1991.
31. Marple, V.A. and C.M. Chien, Virtual Impactors: a Theoretical Study. Environmental Science & Technology, 1980. 14(8): p. 976-985.
32. Masuda, H., D. Hochrainer, and W. Stöber, An Improved Virtual Impactor for Particle Classification and Generation of Test Aerosols with Narrow Size Distributions. Journal of Aerosol Science, 1979. 10(3): p. 275-287.
33. Boulter, J.E., et al., Design and Performance of a Pumped Counterflow Virtual Impactor. Aerosol Science and Technology, 2006. 40(11): p. 969-976.
34. Loo, B.W. and J.M. Jaklevic, An Evaluation of the ERC Virtual Impactor. Lawrence Berkelev Laboratory, University of California Berkeley, California 94720, 1973.
35. McFarland, A.R., C.A. Ortiz, and R.W. Bertch, Particle Collection Characteristics of a Single-Stage Dichotomous Sampler. Environmental Science & Technology, 1978. 12(6): p. 679-682.
36. Loo, B.W. and C.P. Cork, Development of High Efficiency Virtual Impactors. Aerosol Science and Technology, 1988. 9(3): p. 167-176.
37. Kim, T.K., et al., Visualization of Defect Particle Transmission to the Major Flow of a Slit Virtual Impactor. Aerosol Science and Technology, 2004. 38(9): p. 870-880.
38. Marple, V.A. and B.A. Olson, History of Virtual Impactors. Aerosol Science and Technology: History and Reviews, 2011.
39. Chen, B.T. and H.C. Yeh, An Improved Virtual Impactor: Design and Performance. Journal of Aerosol Science, 1987. 18(2): p. 203-214.
40. Novick, V.J. and J.L. Alvarez, Design of a Multistage Virtual Impactor. Aerosol Science and Technology, 1987. 6(1): p. 63-70.
41. Liu, B.Y.H., et al., Airborne Particulate Matter and Spacecraft Internal Environments. SAE Technical Paper No. 911476, 1991.
42. Koch, W., W. Dunkhorst, and H. Lodding, Design and Performance of a New Personal Aerosol Monitor. Aerosol Science and Technology, 1999. 31(2-3): p. 231-246.
43. Chein, H. and D.A. Lundgren, A Virtual Impactor with Clean Air Core for the Generation of Aerosols with Narrow Size Distributions. Aerosol Science and Technology, 1993. 18(4): p. 376-388.
44. Marple, V.A., B.Y.H. Liu, and R.M. Burton, High-volume Impactor for Sampling Fine and Coarse Particles. Journal of the Air & Waste Management Association, 1990. 40(5): p. 762-767.
45. Sioutas, C., P. Koutrakis, and R.M. Burton, Development of a Low Cutpoint Slit Virtual Impactor for Sampling Ambient Fine Particles. Journal of Aerosol Science, 1994. 25(7): p. 1321-1330.
46. Gotoh, K. and H. Masuda, Improvement of the Classification Performance of a Rectangular Jet Virtual Impactor. Aerosol Science and Technology, 2000. 32(3): p. 221-232.
47. Hu, S. and A.R. McFarland, Circumferential-Slot Virtual Impactors with Stable Flow. Aerosol Science and Technology, 2008. 42(9): p. 748-758.
48. Seshadri, S., et al., A Circumferential Slot In-Line Virtual Impactor. Aerosol Science and Technology, 2008. 42(1): p. 40-49.
49. Hari, S., A.R. McFarland, and Y.A. Hassan, CFD Study on the Effects of the Large Particle Crossing Trajectory Phenomenon on Virtual Impactor Performance. Aerosol Science and Technology, 2007. 41(11): p. 1040-1048.
50. Sioutas, C., et al., Fine Particle Concentrators for Inhalation Exposures—Effect of Particle Size and Composition. Journal of Aerosol Science, 1997. 28(6): p. 1057-1071.
51. Bergman, W., et al., High Air Flow, Low Pressure Drop, Bio-Aerosol Collector Using a Multi-Slit Virtual Impactor. Journal of Aerosol Science, 2005. 36(5–6): p. 619-638.
52. Ding, Y. and P. Koutrakis, Development of a Dichotomous Slit Nozzle Virtual Impactor. Journal of Aerosol Science, 2000. 31(12): p. 1421-1431.
53. Hari, S., Y.A. Hassan, and A.R. McFarland, Optimization Studies on a Slit Virtual Impactor. Particulate Science and Technology, 2006. 24(2): p. 105-136.
54. Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York, Wiley-Interscience, 1982. 1: p. 442.
55. Fang, W.C., Numerical Simulation of ESP Type Air-Liquid Interface (ALI) Cell Exposure System Using COMSOL Multiphysics. 2013.
56. Fuchs, N.A., The Mechanics of Aerosols. Pergamon Press: New York, 1964.
57. Haglund, J.S., Two Linear Slot Nozzle Virtual Impactors for Concentration of Bioaerosols. 2005, Texas A&M University.
58. Chang, P.Y., Development and Performance Charaterization of a Steam-Based Aerosol Collector. 2015.