| 研究生: |
歐廸政 Ti-Cheng Ou |
|---|---|
| 論文名稱: |
氧化鈦和氧化鈦-氧化鐵擔載金-銅雙金屬觸媒應用於甲醇部份氧化產氫之研究 Production of hydrogen by partial oxidation of methanol over bimetallic Au-Cu/TiO2 and Au-Cu/TiO2-Fe2O3 catalysts |
| 指導教授: |
張奉文
Feg-Wen Chang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 224 |
| 中文關鍵詞: | 氧化鈦-氧化鐵複合擔體 、二氧化鈦擔體 、金-銅雙金屬觸媒 、甲醇部份氧化 、氫氣 、沈澱固著法 |
| 外文關鍵詞: | Methanol partial oxidation, Hydrogen, Deposition-precipitation, Au-Cu bimetallic catalyst, TiO2 support, TiO2-Fe2O3 binary support |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以沈澱固著法製備Au-Cu/TiO2與Au-Cu/TiO2-Fe2O3雙金屬觸媒應用於甲醇部份氧化反應產製氫氣(partial oxidation of methanol,POM,CH3OH + 0.5O2 2H2 + CO2,△H0298= -192.5 kJ/mol)。其中觸媒的物性分析包括感應耦合電漿原子發射光譜儀(ICP-AES)、熱重分析儀 (TGA)、X射線繞射分析儀 (XRD)、程式升溫還原 (TPR)、氨氣程溫脫附(NH3-TPD)、穿透式電子顯微鏡 (TEM and HR-TEM)、X-射線光電子能譜儀(XPS)等分析儀器及技術。觸媒的化性分析以甲醇部份氧化反應進行活性測試,藉由改變觸媒種類、擔體Ti/Fe比例、觸媒製備pH值、反應進料O2/CH3OH比例、煅燒溫度與反應溫度等的操作變數,將所得到的化性結果配合物性分析,以探討不同實驗參數對於觸媒活性的影響。並由實驗結果評估Au-Cu/TiO2與Au-Cu/TiO2-Fe2O3雙金屬觸媒催化甲醇部份氧化反應產製氫氣應用於燃料電池的可行性。
由實驗結果得知,銅在Au-Cu/TiO2雙金屬觸媒中扮演了阻止金晶粒粒徑增加的角色,此與金屬-金屬間作用力與電子由銅轉移到金進而提供更多的活性氧有著密切的關聯。由TEM的結果得知,經過煅燒的觸媒的金屬粒徑並沒有明顯增大,顯示出銅的存在使雙金屬觸媒有較強抗燒結的能力。由XPS的檢測結果發現Au-Cu/TiO2雙金屬觸媒在煅燒與POM反應後仍有氧化態金(Au?+)存在,銅與金共存可以穩定金屬粒徑並可以在煅燒程序中穩定氧化金的狀態,而此氧化金即是擔體金觸媒主要的活性基點。Au-Cu/TiO2雙金屬觸媒比Au/TiO2及Cu/TiO2雙觸媒有更佳的觸媒活性、氫氣選擇率與觸媒穩定性。反應進料比例在O2/CH3OH =0.3的反應時氫氣選擇率最高,達到92.4%。在O2/CH3OH =0.1,氧氣不足的情況下加速了甲醇進行直接分解反應,因此一氧化碳選擇率升高到11%左右。所以最適當的反應進料比例為O2/CH3OH= 0.3。觸媒的甲醇轉化率與氫氣選擇率隨著反應溫度升高有增加的趨勢,到523 K後所增加的幅度不大。反應溫度達到548 K時一氧化碳選擇率明顯的上升,這表示了在此溫度之上,甲醇分解反應與逆向水氣轉移反應同時進行,實驗結果發現523 K是最佳的反應溫度。
在Au-Cu/TiO2-Fe2O3觸媒中加入適量的氧化鐵會使甲醇轉化率增加,過多氧化鐵也可能阻擋活性金屬的活性基點而造成甲醇轉化率下降。在Ti/Fe=9/1的Au-Cu/TiO2-Fe2O3觸媒中,適量的氧化鐵與高分散性的金-銅晶粒之間增強的相互作用與電子轉移可使觸媒表面活性氧的濃度增加。在pH 7製備的觸媒,有著較小的金屬晶粒與較多活性基點,所以觸媒活性較高。Au-Cu/TiO2-Fe2O3觸媒在煅燒與反應後仍有活性成分(Au?+)存在,代表觸媒有著良好的穩定性。隨著反應溫度的升高,甲醇轉化率與氫氣產率隨之增加,其中氫氣產率在573 K時達到最高值288 mmol/kgcat-s。在448 K到473 K之間,氫氣選擇率約80%。這表示高度放熱反應的甲醇燃燒反應與甲醇部份氧化反應同時進行。在反應溫度提高到498 K時,氫氣選擇率上升到86.4%。當反應溫度在498到523 K時,氫氣選擇率持續的升高;另外,在498 K與548 K時所得到的高氫氣選擇率是因為甲醇蒸氣重組反應在此溫度範圍內也同時進行。在573 K時,有較明顯的一氧化碳選擇率的增加,這是因為在此反應溫度下甲醇直接分解反應與逆向水蒸氣轉移反應在反應系統中同時發生。本研究成果與其他關於鉑、銅與鈀觸媒應用在甲醇部份氧化反應的研究成果比較,發現Au-Cu/TiO2-Fe2O3 觸媒可以更有效率低溫催化甲醇部份氧化反應產製氫氣。
Part I:Au-Cu/TiO2 catalysts
The catalytic activity of Au/TiO2 (2 wt.% Au), Cu/TiO2 (2 wt.% Cu) and Au-Cu/TiO2 (1 wt.% Au-1 wt.% Cu) catalysts were studied for partial oxidation of methanol (POM) to produce H2. The catalysts were characterized by ICP-AES, TGA, XRD, TEM, TPR and XPS analyses. The bimetallic Au-Cu/TiO2 catalysts are more active, stable and exhibit higher hydrogen selectively with smaller amount of CO compared to the Au/TiO2 and Cu/TiO2 catalysts. The enhanced activity, selectivity and stability of the bimetallic catalysts are due to Au-Cu interaction that creates smaller metal particles, which consequently stabilize the active component for POM to produce H2. The activity of Au-Cu/TiO2 catalysts at different pH during preparation, O2/CH3OH ratio, calcination temperature and reaction temperature were optimized. The Au-Cu/TiO2 catalysts prepared at pH 7 and dried at 373 K show higher activity. The catalytic performance at various reaction temperatures shows that the methanol conversion and H2 selectivity are increased with rise in temperature. The CO selectivity is increased beyond 548 K. Other possible reactions involved during POM are suggested as methanol combustion, steam reforming, decomposition, reverse water gas shift, water gas shift and CO oxidation.
Part II:Au-Cu/TiO2-Fe2O3 catalysts
Partial oxidation of methanol (POM) to produce H2 was investigated over Au-Cu/TiO2 and Au-Cu/TiO2-Fe2O3 catalysts. The catalysts were prepared by deposition-precipitation method and characterized by TGA, XRD, TEM, HR-TEM, ICP-AES, TPR, NH3-TPD and XPS analyses. Detail study on the Au-Cu/TiO2-Fe2O3 catalysts was performed to optimize Ti/Fe ratio, pH during preparation of the catalyst, O2/CH3OH ratio, calcination temperature and reaction temperature. The Au-Cu/TiO2-Fe2O3 catalyst with Ti/Fe= 9/1 atomic ratio is more active and exhibits higher methanol conversion compared to the Au-Cu/TiO2 catalyst. The higher activity of Fe-containing catalyst was attributed to the ability to supply reactive oxygen, thereby stabilize active gold species (Auδ+) in the catalyst. Studies on the optimization of pH during preparation of the Au-Cu/TiO2-Fe2O3 catalyst and calcination temperature shows that the catalyst prepared at pH 7 and dried at 373 K (uncalcined) exhibited higher activity. The catalytic performance at various reaction temperatures shows that both methanol conversion and hydrogen selectivity are increased with increasing the temperature. A small increase in CO selectivity was observed beyond 523 K, which is due to the decomposition of methanol and reverse water gas shift at high temperatures.
Agrell, J., K. Hasselbo, K. Jansson, S.G. Järås, M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 211, 239, (2001).
Agrell, J., H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, Journal of Catalysis, 219, 389, (2003 a).
Agrell, J., M. Boutonnet, I.M. Cabrera, J.L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterisation” Applied Catalysis A : General, 253, 201, (2003 b).
Agrell, J., M. Boutonnet, J.L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part II. Catalytic activity and reaction pathways”, Applied Catalysis A : General, 253, 213, (2003 c).
Agrell, J., G. Germani, S.G. Järås, M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique” Applied Catalysis A : General, 242, 233, (2003 d).
Águila, G., F. Gracia, J. Cortés, P. Araya, “Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts”, Applied Catalysis B: Environmental, 77, 325, (2008).
Alejo, L., R. Lago, M.A. Peña, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A: General, 162, 281, (1997).
Baatz, C. and U. Brüße, “Preparation of gold catalysts for glucose oxidation by incipient wetness”, Journal of Catalysis, 249, 34, (2007).
Bartlett, N., “Relativistic effects and the chemistry of gold”, Gold Bulltien, 31, 22, (1998).
Berteau, P., B. Delmon, “Modified aluminas: Relationship between activity in 1-butanol dehydration and acidity measured by NH3 TPD”, Catalysis Today, 5, 121, (1989).
Boccuzzi, F., A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Lchikawa, M. Haruta, “Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation”, Journal of catalysis, 202, 256, (2001).
Bockris, J.O’M., “Hydrogen economy in the future”, International Journal of Hydrogen Energy, 24, 1, (1999).
Bond, G.C. and D.T. Thompson, “Catalysis by Gold”, Catalysis Review Science Engineering, 41, 319, (1999).
Bond, G.C. and D.T. Thompson, “Gold-catalysed oxidation of carbon monoxide”, Gold Bulletin, 33, 41, (2000).
Boyd, D., S. Golunski, G.R. Hearne, T. Magadzu, K. Mallick, M.C. Raphulu, A. Venugopal, M.S. Scurrell, “Reductive routes to stabilized nanogold and relation to catalysis by supported gold”, Applied Catalysis A: General, 292, 76, (2005).
Cellier, C., S. Lambert, E.M. Gaigneaux, C. Poleunis, V. Ruaux, P. Eloy, C. Lahousse, P. Bertrand, J.-P. Pirard, P. Grange, “Investigation of the preparation and activity of gold catalysts in the total oxidation of n-hexane”, Applied Catalysis B: Environmental, 70, 406, (2007).
Chang, F.-W., H.-Y. Yu, L.S. Roselin, H.-C. Yang, “Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts”, Applied Catalysis A: General, 290, 138, (2005).
Chang, F.-W., H.-Y. Yu, L.S. Roselin, H.-C. Yang, T.-C. Ou, “Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides”, Applied Catalysis A: General, 302, 157, (2006).
Chang, L.H., N. Sasirekha, Y.W. Chen, “Au/MnO2-TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream”, Catalysis Communications, 8, 1702, (2007).
Cheng, L.S., R.T. Yang, N. Chen, “Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia”, Journal of Catalysis, 164, 70, (1996).
Chen, Q.B., L.T. Luo, X.M. Yang, “Partial oxidation of methanol on Au-Pd/ceria”, Indian Journal of Chemistry, Section A: Inorganic, Bio-inorganic, Physical, Theoretical & Analytical Chemistry, 47, 1317, (2008).
Chimentão, R.J., F. Medina, J.L.G. Fierro, J. Llorca, J.E. Sueiras, Y. Cesteros, P. Salagre, “Propene epoxidation by nitrous oxide over Au–Cu/TiO2 alloy catalysts”, Journal of Molecular Catalysis A: Chemical, 274, 159, (2007).
Comotti, M., C.D. Pina, R. Matarrese, M. Rossi, A. Siani, “Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars”, Applied Catalysis A: General, 291, 204, (2005).
Corma, A. and P. Serna, “Chemoselective hydrogenation of nitro compounds with supported gold catalysts”, Science, 313, 332, (2006).
Costello C. K., J. H. Yang, H. Y. Law, Y. Wang, J.-N. Lin, L.D. Marks, M.C. Kung, H.H. Kung, “On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3”, Applied Catalysis A: General, 243, 15, (2003).
Cubeiro, M.L., J.L.G. Fierro “Partial oxidation of methanol over supported palladium catalysts”, Applied Catalysis A: General, 168, 307, (1998).
Debeila, M.A., N.J. Coville, M.S. Scurrell, G.R. Hearne,” The effect of calcination temperature on the adsorption of nitric oxide on Au-TiO2: Drifts studies”, Applied Catalysis A: General, 291, 98, (2005).
Dietz, W.A., “Response factors for gas chromatographic analyses”, Journal of GC, 5, 68, (1967).
Dimitratos, N., A. Villa, C.L. Bianchi, L. Prati, M. Makkee, “Gold on titania: Effect of preparation method in the liquid phase oxidation”, Applied Catalysis A: General, 311, 185, (2006).
Dutta, P.K., A.K. Ray, V.K. Sharma, F.J. Millero, “Adsorption of arsenate and arsenite on titanium dioxide suspensions”, Journal of Colloid and Interface Science, 278, 270, (2005).
Epron, F., F. Gauthard, J. Barbier, “Influence of oxidizing and reducing treatments on the metal–metal interactions and on the activity for nitrate reduction of a Pt-Cu bimetallic catalyst”, Applied Catalysis A: General, 237, 253, (2002).
Eswaramoorthi, I., V. Sundaramurthy, A.K. Dalai, “Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts”, Applied Catalysis A: General, 313, 22, (2006).
Finch, R.M., N.A. Hodge, G.J. Hutchings, A. Meagher, Q.A. Pankhurst, M.R.H. Siddiqui, F.E. Wagner, R. Whyman, “Identification of active phases in Au-Fe catalysts for low-temperature CO oxidation”, Physical Chemistry Chemical Physics, 1, 485, (1999).
Fixman, E.M., M.C. Abello, O.F. Gorriz, L.A. Arrúa, “Preparation of Cu/SiO2 catalysts with and without tartaric acid as template via a sol–gel process: Characterization and evaluation in the methanol partial oxidation”, Applied Catalysis A: General, 319, 111, (2007).
Gardner, S.D., S.B. Hoflund, D.R. Schryer, J. Schryer, B.T. Upchurch, E.J. Kielin, “Catalytic behavior of noble metal/reducible oxide materials for low-temperature carbon monoxide oxidation. 1. Comparison of catalyst performance”, Langmuir, 7, 2135, (1991).
Gervasini, A. and S. Bennici, “Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR)”, Applied Catalysis A: General, 281, 199, (2005).
Gluhoi, A.C., N. Bogdanchikova, B.E. Nieuwenhuys, “The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria”, Journal of Catalysis, 229, 154, (2005).
Gluhoi, A.C., N. Bogdanchikova, B.E. Nieuwenhuys, “Total oxidation of propene and propane over gold–copper oxide on alumina catalysts comparison with Pt/Al2O3”, Catalysis Today, 113, 178, (2006).
Golubina, E.V., E.S. Lokteva, V.V. Lunin, N.S. Telegina, A.Y. Stakheev, P. Tundo, “The role of Fe addition on the activity of Pd-containing catalysts in multiphase hydrodechlorination”, Applied Catalysis A: General, 302, 32, (2006).
Greenwood, N.N. and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, (1984).
Guerreiro, E.D., O.F. Gorriz, G. Larsen, L.A. Arrua, “Cu/SiO2 catalysts for mehanol to methyl formate dehydrogenation: a comparative study using different preparation techniques”, Applied Catalysis A: General, 204, 33, (2000).
Guerreiro-Ruiz, A., I. Rodriguez-Ramos, J.L.G. Fierro, “Dehydrogenation of methanol to methyl formate over supported copper catalysts”, Applied Catalysis A: General, 72, 119, (1991).
Guzman, J. and B.C. Gates, “Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold”, Journal of the American Chemical Society, 126, 2672, (2004).
Haruta, M., T. Kobayashi, H. Sano, N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at low temperature”, Chemistry Letters, 2, 405, (1987).
Haruta, M., N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide” Journal of Catalysis, 115, 301, (1989).
Haider, P. and A. Baiker, “Gold supported on Cu–Mg–Al-mixed oxides: Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium”, Journal of Catalysis, 248, 175, (2007).
Haruta, M., S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, Journal of Catalysis, 144, 175, (1993).
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catalysis Today, 36, 153, (1997).
Haruta, M., “Nanoparticlate gold catalysts for low-temperature CO oxidation”, Journal of New Materials for Electrochemical Systems, 7, 163, (2004).
Hodge, N.A., C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q.A. Pankhurst, F.E. Wagner, R.R. Rajaram, S.E. Golunski, “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation”, Catalysis Today, 72, 133, (2002).
Horny, C., A. Renken, L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production”, Catalysis Today, 120, 45, (2007).
Hua, J., K. Wei, Q. Zheng, Z. Lin, “Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water-gas shift reaction”, Applied Catalysis A: General, 259, 121, (2004).
Huang, J., W.L. Dai, H. Li, K. Fan, ”Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to γ-butyrolactone”, Journal of Catalysis, 252, 69, (2007).
Hutchings, G.J., “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts”, Journal of Catalysis, 96, 292, (1985).
Hutchings, G.J., “Catalysis: A golden future”, Gold Bulletin, 29, 123, (1996).
Hutchings, G.J., M.S. Hall, A.F. Carley, P. Landon, B.E. Solsona, C. J. Kiely, A. Herzing, M. Makkee, J.A. Moulijn, A. Overweg, J.C. Fierro-Gonzalez, J. Guzman, B.C. Gates, “Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold”, Journal of Catalysis, 242, 71, (2006).
Ivanova, S., V. Pitchon, C. Petit, “Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials”, Journal of Molecular Catalysis A: Chemical, 256, 278, (2006).
Jacobs, P.A., in F. Delannay: Characterization of Heterogeneous Catalysts, Dekker, New York, (1984).
Jiang, X.Y., G.L. Lu, R.X. Zhou, J.X. Mao, Y. Chen, X.M. Zheng, “Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts”, Applied Surface Science, 173, 208, (2001).
Jozwiak, W.K., E. Kaczmarek, W. Ignaczak, “Influence of Au/Fe2O3 and Au/TiO2 catalysts preparation on their activity in CO oxidation by oxygen and water gas shift reactions”, Polish Journal of Chemistry, 82, 213, (2008).
Ketchie, W.C., M. Murayama, R.J. Davis, “Selective oxidation of glycerol over carbon-supported AuPd catalysts”, Journal of Catalysis, 250, 264, (2007).
Kohler, M.A., J.C. Lee, D.L. Trimm, M.W. Cant, M.S. Wainwright, “Preparation of Cu/SiO2 catalysts by the ion-exchange technique”, Applied Catalysis A: General, 31, 309, (1987).
Kosmulski, M., “pH-dependent surface charging and points of zero charge II. Update”, Journal of Colloid and Interface Science, 275, 214, (2004).
Kulprathipanja, A. and J.L. Falconer, “Partial oxidation of methanol for hydrogen production using ITO/Al2O3 nanoparticle catalysts”, Applied catalysis A: General, 261, 77, (2004).
Kung, H.H., M.C. Kung, C.K. Costello, “Supported Au catalysts for low temperature CO oxidation”, Journal of Catalysis, 216, 425, (2003).
Kustov, A.L., V.G. Kessler, B.V. Romanovskii, G.A. Seisenbaeva, D.V. Drobot, P.A. Shcheglov, “Nanomaterials based on Re-Mo oxomethoxide binuclear complexes and zeolites: acidity and catalytic activity”, Journal of Physical Chemistry, 78, 68, (2004).
Lagowski, J. J., “Anionic gold”, Gold Bulletin, 16, 8, (1983).
Li, F.B. and X.Z. Li, “Photocatalytic properties of gold/gold ion-modified titanium dioxide for waste treatment”, Applied Catalysis A: General, 228, 15, (2002).
Li, W.C., M. Comotti, F. Schüth, “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation”, Journal of Catalysis, 237, 190, (2006).
Lian, H.L., M.J. Jai, W. Zhang, D. Jiang, “Copper promoted Au/ZnO-CuO catalysts for low temperature water-gas shift reaction”, Chemical Research in Chinese Universities, 22, 99, (2006).
Lin, Y.C., K.L. Hohn, S.M. Stagg-Williams, “Hydrogen generation from methanol oxidation on supported Cu and Pt catalysts: Effects of active phases and supports”, Applied Catalysis A: General, 327, 164, (2007).
Liu, W., “Multi-scale catalyst design”, Chemical Engineering Science, 62, 3502, (2007).
Liu, X., O. Korotkikh, R. Farrauto, “Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst”, Applied Catalysis A: General, 226, 293, (2002).
Liu, X.Y., A. Wang, X.D. Wang, C.Y. Mou, T. Zhang, “Au–Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation”, Chemical Communications, 27, 3187, (2008).
Llorca, J., M. Dominguez, C. Ledesma, R. J. Chimentao, F. Medina, J. Sueiras, I. Angurell, M. Seco, O. Rossell, “Propene epoxidation over TiO2-supported Au-Cu alloy catalysts prepared from thiol-capped nanoparticles”, Journal of Catalysis, 258, 187, (2008).
Manríquez, M.E., T. López, R. Gómez, J. Navarrete, “Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties”, Journal of Molecular Catalysis A: Chemical, 220, 229, (2004).
Marchi, A.J., J.L.G. Fierro, J. Santamaría, A. Monzón, “Dehydeogenation of isopropylic alcohol on Cu/SiO2 catalysts : a study of the activity evolution and reactivation of the catalysts”, Applied Catalysis A: General, 142, 375, (1996).
Margitfalvi, J.L., A. Fási, M. Hegedűs, F. Lónyi, S. Gőbölös, N. Bogdanchikova, “Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation”, Catalysis Today, 72, 157, (2002).
Mathew, T., S. Shylesh, B.M. Devassy, M. Vijayaraj, C.V.V. Satyanarayana, B.S. Rao, C.S. Gopinath, “Selective production of orthoalkyl phenols on Cu0.5Co0.5Fe2O4: a study of catalysis and characterization”, Applied Catalysis A: General, 273, 35, (2004).
Mekhalif, Z., F. Sinapi, F. Laffineur, J. Delhalle, “XPS and electrochemical characterisation of polycrystalline copper modified with 12-(N-pyrrolyl)-n-dodecanethiol”, Journal of Electron Spectroscopy and Related Phenomena, 121, 149, (2001).
Minicò, S., S. Scirè, C. Crisafulli, R. Maggiore, S. Galvagno, “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts”, Applied Catalysis B: Environmental, 28, 245, (2000).
Miyamura, H., R. Matsubara, Y. Miyazaki, S. Kobayashi, “Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives”, Angewandte Chemie International Edition, 46, 4151, (2007).
Mo, L.Y., X.M. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, Chemistry Communication, 12, 1426, (2004).
Morán P.M., S. Castillo, R. Gómez, “Low temperature CO oxidation on Au/TiO2 sol-gel catalysts”, Reaction Kinetics and Catalysis Letters, 76, 375, (2002).
Moradi, G.R., M. Nazari, F. Yaripour, “The interaction effects of dehydration function on catalytic performance and properties of hybrid catalysts upon LPDME process”, Fuel Processing Technology, 89, 1287, (2008).
Moreau, F. and G.C. Bond, “Preparation and reactivation of Au/TiO2 catalysts”, Catalysis Today, 122, 260, (2007).
Mozer, T.S., D.A. Dziuba, C.T.P. Vieira, F.B. Passos, “The effect of copper on the selective carbon monoxide oxidation over alumina supported gold catalysts”, Journal of Power Sources, 187, 209, (2009).
Moulder, J.F., W.F. Stickle, P.E. Sobol, K.D. Bomben, J. Chastain, R.C. King, Jr., “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics, Inc. Eden Prairie, Minnesota, (1992).
Nechayev, Y.A. and G.V. Zvonareva, “Adsorption of gold (III) chloride complexes on hematite”, Geokhimiya, 6, 919, (1983).
Nechayev, Y.A. and G.V. Nikolenko, “Adsorption of gold(III) chloride complexes on alumina, silica, and kaolin.” Geochemistry International, 32, 23, (1986).
Okumura. S., K. Tanaka, A. Ueda, M. Haruta, “The reactivities of dimethylgold(III)β-diketone on the surface of TiO2 : A novel preparation method for Au catalysts”, Solid State Ionics, 95, 143, (1997).
Okumura, M., J.M. Coronado, J. Soria, M. Haruta, J.C. Conesa, “EPR study of CO and O2 interaction with supported Au catalysts”, Journal of Catalysis, 203, 168, (2001).
Okumura, M., S. Tsubota, M. Haruta, “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2”, Journal of Molecular Catalysis A: Chemical, 199, 73, (2003).
Olea, M., M. Kunitake, T. Shido, Y. Iwasawa, “TAP study on CO oxidation on a highly active Au/Ti(OH)4* catalyst”, Physical Chemistry Chemical Physics, 3, 627, (2001).
Parish, R.V., “Organogold chemistry: III applications”, Gold Bulletin, 31, 14, (1998).
Park, E.D. and J.S. Lee, “Effect of pretreatment condition on oxidation over supported Au catalysts”, Journal of Catalysis, 186, 1, (1999).
Pina, C.D., E. Falletta, M. Rossi, “Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold-copper catalyst”, Journal of Catalysis, 260, 384, (2008).
Peña, M.A. and J.L.G. Fierro, “Chemical structures and performance of perovskite oxides”, Chemical Reviews, 101, 1981, (2001).
Prati, L. and M. Rossi, “Gold on carbon as a new catalyst for selective liquid phase oxidation of diols”, Journal of Catalysis, 176, 552, (1998).
Pyykkö, P., “Relativistic effects in structural chemistry”, Chemical Reviews, 88, 563, (1988).
Raimondi, F., K. Geissler, J. Wambach, A. Wokaun, “Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD”, Applied Surface Science, 189, 59, (2002).
Raveendran S. N. and V.V. Guliants “Recent developments in catalysis using nanostructured materials”, Applied Catalysis A: General, 356, 1, (2009).
Ruggiero, C. and P. Hollins, “Interaction of CO molecules with the Au(332) surface”, Surface Science, 583, 377, (1997).
Robertson, S.D., B.D. Mcnicol, J.H. de Baas, S.C. Kloet, “Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction”, Journal of Catalysis, 37, 424, (1975).
Sangpour, P., O. Akhavan, A.Z. Moshfegh, “rf reactive co-sputtered Au-Ag alloy nanoparticles in SiO2 thin films”, Applied Surface Science, 253, 7438, (2007).
Satterfield, C. N., Heterogeneous Catalysis in Industry Practice, McGraw-Hill Inc., New York, 2nd edition, (1991).
Scirè, S., S. Minicò, C. Crisafulli, S. Galvagno, “Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3”, Catalysis Communications, 2, 229, (2001).
Schmidbaur, H., “The fascinating implications of new results in gold chemistry”, Gold Bulletin, 23, 11, (1990).
Schubert, M.M., S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak , R.J. Behm, “CO oxidation over supported gold catalysts—“Inert” and “Active” support materials and their role for the oxygen supply during reaction”, Journal of Catalysis, 197, 113, (2001).
Shiju, N.R. and V.V. Guliants, “Recent developments in catalysis using nanostructured materials”, Applied Catalysis A: General, 356, 1, (2009).
Silberova, B.A.A., M. Makkee, J.A. Moulijn, “Mechanism of deactivation of Au/Fe2O3 catalysts under water–gas shift conditions”, Topics in Catalysis, 44, 209, (2007).
Sinha, A.K., S. Seelan, T. Akita, S. Tsubota, M. Haruta, “Vapor-phase epoxidation of propene over Au/Ti-MCM-41 catalysts: Influence of Ti content and Au content”, Catalysis Letters, 85, 223, (2003).
Smolentseva, E., N. Bogdanchikova, A. Simakov, A. Pestryakov, I. Tusovskaya, M. Avalos, M.H. Farías, J.A. Díaz, V. Gurin, “Influence of copper modifying additive on state of gold in zeolites “, Surface Science, 600, 4256, (2006).
Szabó, E.G., A. Tompos, M. Hegedűs, Á. Szegedi, J.L. Margitfalvi, “The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation”, Applied Catalysis A: General, 320, 114, (2007).
Tabakova, T., V. Idakiev, D. Andreeva, I. Mitov, “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction”, Applied Catalysis A : General, 202, 91, (2000).
Takezawa, N. and N. Iwasa, “Steam reforming and dehydrogenation of methanol: difference in the catalystic functions of copper and group VIII metals”, Catalysis Today, 36, 45, (1997).
Ubago-Pérez, R., F. Carrasco-Marín, C. Moreno-Castilla, “Methanol partial oxidation on carbon-supported Pt and Pd catalysts”, Catalysis Today, 123, 158, (2007).
Ueda, A., T. Oshima, M. Haruta, “Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides”, Applied Catalysis B: Environmental, 12, 81, (1997).
Valden M., X. Lai, D.W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties“, Science, 281, 1647, (1998).
van der Grift, C.J.G., A.F.H. Wielers, B.P.J. Jogh, J. Van Beunum, M.D. Boer, M. Versluijs-Helder, J.W. Geus, “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, Journal of Catalysis, 131, 178, (1991).
Veith, G.M., A.R. Lupini, N.J. Dudney, “Role of pH in the formation of structurally stable and catalytically active TiO2-supported gold catalysts”, Journal of Physical Chemistry C, 113, 269, (2009).
Visco, A.M., F. Neri, G. Neri, A. Donato, C. Milone, S. Galvagno, “X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts”, Physical Chemistry Chemical Physics, 1, 2869, (1999).
Wagner, F.E., S. Galvagno, C. Milone, A.M. Visco, L. Stievano, S. Calogero, “Mössbauer characterisation of gold/iron oxide catalysts”, Journal of the Chemical Society, Faraday Transactions, 93, 3403, (1997)
Wang, Z.F., W.P. Wang, G.X. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151, (2003 a).
Wang, Z.F., J.Y. Xi, W.P. Wang, G.X. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, Journal of Molecular Catalysis A: Chemical, 191, 123, (2003 b).
Wang J.X. and L.T. Luo, “A comparative study of partial oxidation of methanol over zinc oxide supported metallic catalysts”, Catalysis Letters, 126, 325, (2008).
Wolf, A. and F. Schüth, “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Applied Catalysis A: General, 226, 1, (2002).
Xu, X., J. Li, Z. Hao, W. Zhao, C. Hu, “Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation”, Materials Research Bulletin, 41, 406, (2006).
Yuan, Y., A.P. Kozlova, H. Asakura, K. Wan, I. Iwasawa, “Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: characterization and low-temperature CO oxidation”, Journal of Catalysis, 170, 191, (1997).
吳榮宗,“工業觸媒概論” 增訂新版,國興出版社,1989年8月。
陳永杰,洪華聖與葉君棣, “支撐性金觸媒在甲醇部份氧化反應上的應用”,第十九屆觸媒與反應工程研討會 (2001)。
黃鎮江,“燃料電池” 修訂版,全華科技圖書股份有限公司,2005年3月。
雷敏宏,“觸媒的本領”,科學發展,352,(2002)。