| 研究生: |
張耀文 Yao-Wen Chang |
|---|---|
| 論文名稱: |
海水對水泥改良砂土液化特性之影響 The effect of liquefaction properties for seawater in cement treated sand |
| 指導教授: |
張惠文
Huei-Wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 水泥改良 、人工海水 、氯離子 、液化阻抗 |
| 外文關鍵詞: | liquefaction resistance, chlorine ion, artificial seawater, cement improvement |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以峴港砂代表現地回填料,進行砂土液化特性與水泥改良效果之評估。在不同水泥配比、養治時間及試體準備方式之條件下對改良砂土力學性質作一探討。本研究之實驗重點乃以相對密度為40%之砂土添加細料含量10%,配以0.3%、0.5%、1.0%及2.0%的水泥配比,利用濕搗法製作改良砂土試體。製作試體時所使用之拌和水有蒸餾水與人工海水兩種,本研究在配製人工海水時所需的鹽度定為35‰,用以模擬海洋環境。改良砂土試體經3天、7天、28天及56天養治後,進行無圍壓縮試驗及動力三軸試驗。
經由無圍壓縮試驗結果發現,氯離子會提高水泥的早期強度。養治天數28天以前,在相同配比、相同養治天數下,以人工海水拌和的試體強度會比以蒸餾水拌和的試體高。但當養治天數為56天時,以人工海水拌和的試體強度會較養治天數為28天時來得低,此結果與用蒸餾水拌和的試體恰好相反。
經由動力三軸試驗結果發現,改良砂土養治時間為7天時,添加水泥配比為2%時,試體之液化阻抗會提高,當養治時間為28天時,添加水泥配比為1%,液化阻抗便會增加,使試體較不易發生破壞。此外,本研究亦探討了水泥改良砂土之剪力模數、剪應變與水泥配比間的關係。經試驗及分析後,發現添加水泥改良後,以上諸特性均有良好之改良效果。
This research used Danang sand as the representing material of in-situ reclaimed soil to investigate the properties of liquefaction and to evaluate the improvement effects attributed to using cement. A series of experiments have been done on a set of samples made by using wet tamping method. The set consists of samples having Danang sand for relative density (40%) and fine contents (10%) mixed with different cement contents (0.3%, 0.5%, 1.0%, and 2.0%). This research having two different blend water for making up samples, distilled water and artificial seawater. The degree of salt for this research is 35‰ which making up artificial seawater we need. After curing for 3, 7, 28 or 56 days, the unconfined compression tests and dynamic triaxial tests were conducted.
According to the results of unconfined compression tests, it is understood that chlorine ion will improve the strength of cement treated sand. Before 28-day curing, the strength of samples mixed with artificial seawater are higher than that of the samples mixed with distilled water. But when curing period is 56 days, the strength will be a little lower for samples mixed with artificial seawater. This result is opposite to that of the samples mixed with distilled water.
According to the results of dynamic triaxial tests, when the curing period is 7 days, adding cement of 2% mixing rates to the sand will improve the liquefaction resistance. For the case of 28-day curing, adding cement of 1% mixing rates to the sand will also have the same effect.
1.地盤工學會,土質試驗法,日本地盤工學會,第172~188頁(1979)。
2.蕭達鴻,「砂質土壤添加水泥材料工程特性之研究」,技術學刊,第十一卷,第三期,第305-311頁(1996)。
3.張善同,「旋轉灌漿固化地基之技術」,中國鐵道出版社,北京(1984)。
4.陳世耀,「氯離子在混凝土中行為之研究」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
5.李明君,「海砂和海鹽對混凝土性質之影響及改善方法研究」,碩士論文,國立中央大學土木工程學系,中壢(1989)。
6.劉卓奇,「水泥組成成份與氯離子關係之研究」,碩士論文,國立交通大學土木工程學系,新竹(1996)。
7.黃兆龍、王和源,「海砂對水泥砂漿硫酸鹽侵蝕微觀結構變化及抑制策略之研究」,防蝕工程,第六卷,第一期,第1~8頁(1992)。
8.李釗、李明君,「以含鹽之水拌合混凝土對其性質的影響」,第四屆路面工程學術研討會,國立交通大學,新竹(1989)。
9.朱志光,「海水對混凝土影響之研究」,碩士論文,國立成功大學土木工程學系,台南(1987)。
10.張惠文、廖新興、鄭清江,「砂質地盤液化之防治方法探討」,地工技術雜誌,第三十八期,第17-29頁(1987)。
11.張惠文,「利用水泥及石灰系材料之深層攪拌工法」,現代營建,第三十八期,第45~50頁(1984)。
12.張惠文、陳修,「水泥系改良土之工程特性」,行政院國家科學委員會研究計劃,計劃編號:NSC74-0410-E008-04,(1985)。
13.張惠文、曾迪華、李顯智、鄭清江、徐瑞祥,「台灣地區海岸填海造地技術整合第一期計劃」,行政院公共工委員會專案研究計劃成果報告,計劃編號;86-技-03,(1997)。
14.邱奇昌,「砂土經水泥改良後之力學性質」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
15.王冠彬,「含細料砂質改良土之力學性質」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
16.簡連貴,「水力砂土回填技術在造地工程之應用」,地工技術雜誌,第51期,第21-34頁(1995)。
17.簡連貴、葉國樑、胡淵南,「細料含量對抽砂回填土壤動態特性之影響」,中國土木水利工程學刊,第七卷,第四期,第409-420頁(1995)。
18.鄭清江,「片狀砂土模擬水力填築後剪力特性之研究」,博士論文,國立中央大學土木工程學系,中壢(1996)。
19.Chung, K.Y.C. and Wong, I.H., “Liquefaction Potenial of Soils with Plastic Fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, July, pp.887-897(1982).
20.Dupas, I.M. and Decker, A., “Static and Dynamic Properties of Sand Cement,” Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No.GT3, June, pp.799-817(1981).
21.K’ezdi, A., “Stabilized Earth Roads,” Developments in Geotechnical Engineering 19, New York,(1979).
22.Lee, K.L. and Fitton, J.A., “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM STP 450, pp.801-821(1969).
23.Morgenstern, N. R., “Hydraulic Fill Structures – A Perspective,” Hydraulic Fill Structures, Geotechnical Special Publication, No.21, ASCE, pp.1-31(1988).
24.Placzek, D., “Methods for the Calculation of Settlements Due to Ground-Water Lowering,” Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, Vol.3, pp.1813-1818(1989).
25.Pyke, R. M,. Knuppel, L. A., and Lee, K. L., “Liquefaction Potential of Hydraulic Fills,” Journal of Geotechnical Engineering Division, ASCE, Vol.104 ,No. GT11, pp.1335-1354(1978).
26.Saxena, S.K. et al., “Liquefaction Resistance of Artificially Cemented Sand,” Journal of Geotechnical Engineering Division, ASCE, Vol. 114, No.12, pp.1395-1413(1988).
27.Seed, H.B., “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering Session on Soil Dynamics Committee of Geotechnical Engineering Division, ASCE, pp.1-104(1976).
28.Seed, H.B. and Lee, K.L., “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
29.Seed, H.B., Wong, R.T., Idriss, I.M., and Toimatsu, K., “Moduli and Damping Factors for Dynamic Analysis of Cohesionless Soils,” Journal of Geotechnical Engineering Division, ASCE, Vol.112, No.GT11, pp.1016-1032(1986).
30.Sladen, J. A. and Hewitt, K. J., “Influence of Placement Method on the In-Situ Density of Hydraulic Sand Fills,” Canadian Geotechnical Journal, Vol.26, pp.453-466(1989).
31.Tringale, P.T., “Soil Identification In-situ Using an Acoustic Cone Penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
32.Tokimatsu, K. and Seed, H. B., “Evaluation of Settlement in Sands Due to Earthquake Shaking,” Journal of Geotechnical Engineering, Vol.113, No.8, pp.861-878(1987).
33.Umehara, Y., Zen, K., and Yoshizawa,H., 1990, “Design Concept of Treated Ground by Premixing Method,“ Geo-coast, 3-6, Sep., Yokohama, pp.519-524(1991).
34.Vaid, Y.P. and Chern, J.C., “Cyclic and Monotonic Undrained Response of Saturated Sands,” National Convension Session on Advance in the Art of Testing Soils Under Cyclic Loading, ASCE, Detroit, pp.120-147(1985).
35.Verhoeven, F. A., de Jong A. J., “The Essense of Soil Properties in Today’s Dredging Technology,” Hydraulic Fill Structures, Geotechnical Special Publication, No.21, ASCE, pp.1033-1064(1988).
36.Yoshimi, Y., “Ductility Criterion for Evaluation Liquefaction Remediation Measure,” Tsuchi-to-kiso JSSMFE, Vol.36, No.6, pp.33-389(1990).
37.Zen, K., “Development of Premixing Method as a Measure to Construct a Liquefaction-free Reclaimed Land,” Tsuchi-to-kiso, JSSMFE, Vol. 36, No.6, pp.27-32(1990).