| 研究生: |
陳志安 Chih-An Chen |
|---|---|
| 論文名稱: |
數值模擬超臨界二氧化碳在多孔材圓管中之熱流現象 Numerical simulation of heat transfer of supercritical carbon dioxide within a porous medium tube |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 超臨界二氧化碳 、多孔材料 、數值模擬 |
| 外文關鍵詞: | supercritical carbon dioxide, numerical analysis, porous media |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將以數值方法來模擬超臨界二氧化碳在多孔材圓管中的熱流現象。在模擬多孔材料時,採用Brinkman-Forchheimer-extended-Darcy Model來描述流體在多孔材料中受到的力。忽略重力與黏滯消散(Viscous dissipation)、熱輻射的影響,並假設流場為層流。三維的幾何外型透過軸對稱的條件簡化成二維問題。在多孔材料下的雷諾數、達西數、孔隙率、固體與液體之熱傳導係數比值等對於流場與熱傳特性之影響為本研究之討論重點。
Numerical simulation heat transfer of supercritical carbon dioxide in tube filled with porous media is considered in this work. The flow porous media is modeled using Brinkman-Forchheimer-extended-Darcy model. The effects of gravity and viscous dissipation are neglected, and assume as laminar flow. Three-dimension geometry is simplified to two-dimension, using axisymmetric condition. Variation of Nusselt number, which is affected by Reynolds number, Darcy number, Porosity, and thermal conductivity ratio of solid to fluid, will be discussed in this work
1. C. Cagniard de la Tour, Annals of Chemistry Physics, Vol. 21, pp. 127., 1822.
2. T. Andrews, Philosophical Transactions Royal Society, Vol. 159, pp. 575, London, 1869
3. J.B. Hanny, and J. Hogarth, “On the solubility of solids in gases,” Royal Society Proceedings, Vol. 29, pp. 324, 1879
4. A. Michels, B. Blaisse, and C. Michels, Royal Society Proceedings, Ser. A, Vol. 160, pp. 358, 1937
5. R. Marr, and T. Gamse, “Use of supercritical fluids for different process including new developments-a review,” Chemical Engineering and Processing, Vol. 39, pp. 19-28, 2000
6. M. Zougaha, M. Valcarcel, and A. Rios, “Supercritical fluid extraction : a critical review of its analytical usefulness,” Trends in Analytical Chemistry, Vol. 23, No. 5, pp. 399-405, 2004
7. W.E. Rudzinski, and T.M. Aminabhavi, “A Review on Extraction and Identification of Crude Oil and Related Products Using Supercritical Fluid Technology,” Energy and Fuels, Vol. 14, pp. 464-475, 2000
8. M.J.E. van Roosmalen, G.F. Woerlee, and G.J. Witkamp, “Dry-cleaning with high-pressure carbon dioxide—the influence of process conditions and various co-solvents (alcohols) on cleaning-results,” Journal of Supercritical Fluids, Vol. 27, pp. 337-344, 2003
9. M. Bahrami, and S. Ranjbarian, “Production of micro- and nano-composite particles by supercritical carbon dioxide,” Journal of Supercritical Fluids, Vol. 40, pp. 263-283, 2007
10. I.L. Pioro, H.F. Khartabil, and R.B. Duffey, “Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey),” Nuclear Engineering and Design, Vol. 230, pp. 69-91, 2004
11. E.W. Lemmon, M.O. McLinden, and D.G. Friend, “Thermo-physical properties of fluid systems,” in P.J. Linstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, National Institute of Standards and Technology, 2003
12. S.M. Liao, and T.S. Zhao, “Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels,” Journal of Heat Transfer, Vol. 124, pp. 413-420, 2002