跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李昱翰
Yu-Han Li
論文名稱: 奈米鋰電池陰極材料之製備及其改質之電池性能探討
Polymer Electrolyte Encapsulated nanosize LiCoO2 cathode material for lithium battery
指導教授: 諸伯仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 鋰電池奈米陰極材料
外文關鍵詞: cathode, LiCoO2, nano particle, Li ion battery
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Thermal and electrochemical stability of the cathode materials is a critical factor governing the energy capacity and recharge cyclability of the secondary lithium battery. Present study successfully demonstrated the preparation of nano scale LiCoO2 cathode material by reverse micro-emulsion method. The charge capacity is improved due to the high surface area and the raised lithium intercalation efficiency from the nano particle. Coating the nano sphere LiCoO2 with ion conducting polymer electrolytes prevented the direct contact of the cathode materials with the electrolyte solvent. The encapsulation also showed improvement of the thermal stability and electrochemical stability. The modification of the nano-sized cathode material with solid polymer electrolyte lead to increase charge capacity, reduces irreversible charge capacity losses, increases battery cycle life, and raises the voltage tolerance from 4.1 V.

    第一章 緒論.......................................1 1-1 前言.................................................1 1-2高分子鋰二次電池之發展................................2 1-3高分子電解質..........................................3 1-4高分子鋰電池之正負極材料簡介..........................9 1-5鋰離子電池之電解液...................................13 1-6研究動機與目的.......................................14 第一章 參考文獻..........................................15 第二章 文獻回顧..................................17 2-1 LiCoO2 陰極材料.................................17 2-2 以微乳交法合成奈米無機材料.......................18 2-3 以金屬氧化物進行表面改質............................19 2-4 電解液分解的研究....................................20 2-5 以PDDA包覆改質電極.................................23 第二章 參考文獻..........................................25 第三章 實驗技術及原理....................................27 3-1 實驗藥品.............................................27 3-2 實驗步驟.............................................28 3-2-A1 LiCoO2奈米顆粒.....................................28 3-2-A2 包覆奈米LiCoO2....................................29 3-2B1 以容膠-凝膠法製備奈米顆粒..........................31 3-2B2 奈米管、片二氧化鈦合成( Nano-tube、slab TiO2 )...................................................31 3-3 材料鑑定............................................ 31 3-4 材料電化學特性分析.................................. 34 3-4-1 電池性能測試 ......................................34 3-4-2 慢速循環伏安分析(Slow Scanning Cyclic Voltammetry, SSCV)....................................................37 第四章 結果與討論.......................................39 Part A 奈米陰極材料的製備................................46 4A-1 XRD分析.............................................48 4A-2 SEM分析.............................................49 4A-3 CV測試..............................................51 4A-4 交流阻抗分析........................................52 4A-5 充放電測試..........................................53 Part B 電解質包覆高分子..................................55 4B-1微差掃瞄熱卡計(DSC)分析..............................55 4B-2 熱重量分析儀(TGA)...................................58 4B-3 電子顯微鏡分析(SEM).................................59 4B-4 電池性能評估........................................63 4B-5 交流阻抗分析........................................68 Part C二氧化鈦奈米板.....................................69 結 論....................................................78 第四章 參考文獻..........................................79

    (1) T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara,
    Langmuir. 1998, 14, 3160.
    (2) T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv.
    Materials. 1999, 11, 1307.
    (3) Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue, Chemical
    Physics Letters. 2002, 365, 427.
    (4). J. P. Southall, H. Hubbard, S. F. Johnston, V. Rogers, G. R. Davies, J.
    E. Mcintyre, Solid state ionics. 1996, 85, 51.
    (5) Renzhi Ma,* Yoshio Bando, and Takayoshi Sasaki , J. Phys. Chem. B. 2004, 108, 2115.
    (6) Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa,
    H. J. Am. Chem. Soc. 1996, 118, 8329.
    (7) Fang, M.; Kim, C. H.; Saupe, G. B.; Kim, H.; Waraksa, C. C.;
    Miwa, T.; Fujishima, A.; Mallouk, T. Chem. Mater. 1999, 11, 1526.
    (8) Liu, Z.; Yang, X.; Makita, Y.; Ooi, K. Chem. Mater. 2002, 14,
    4800.
    (9) Omomo, Y.; Sasaki, T.; Wang, L.; Watanabe, M. J. Am. Chem.
    Soc. 2003, 125, 3568.
    (10) Treacy, M. M. J.; Rice, S. B.; Jacobson, A. J.; Lewandowski, J. T.
    Chem. Mater. 1990, 2, 279.
    (11) Ebina, Y.; Sasaki, T.; Harada, M.; Watanabe, M. Chem. Mater.
    2002, 14, 4390.
    (12) Saupe, G. B.; Waraksa, C. C.; Kim, H.; Han, Y. J.; Kaschak, D.
    M.; Skinner, D. M.; Mallouk, T. E. Chem. Mater. 2000, 12, 1556.
    (13) Schaak, R. E.; Mallouk, T. E. Chem. Mater. 2000, 12, 3427.
    (14) Li, Y. D.; Li, X. L.; He, R. R.; Zhu, J.; Deng, Z. X. J. Am. Chem.
    Soc. 2002, 124, 1411.

    QR CODE
    :::