跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳睿哲
Jui-Che Wu
論文名稱: 高分子聚合物四波長陣列波導光柵之輸入及輸出埠光學界面特性研究
Optical Interface Study for Input and Output Ports of Polymer-Based 4-Wavelength Array Waveguide Gratings
指導教授: 張正陽
Jenq-Yang Chang
伍茂仁
Mount-Learn Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 58
中文關鍵詞: 高分子聚合物光波導低密度分波多工器陣列波導光柵
外文關鍵詞: Polymer, Optical Waveguide, CWDM, Array Waveguide Grating
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以高分子聚合物光波導製程適用於4通道 x 25-Gbps 低密度分波多工器(Coarse Wavelength Division Multiplexing)單模光學收發模組之光學引擎。此光學引擎之輸入端於矽基板上整合了分佈回饋式雷射(Distributed Feedback Laser)、高分子聚合物光波導陣列波導光柵(Polymer Waveguide Based Array Waveguide Grating)作為多工器;接收端於玻璃基板上整合了高分子聚合物光波導陣列波導光柵(Polymer Waveguide Based Array Waveguide Grating)作為解多工器、1 x 4陣列PIN光電二極體(1 x 4 Array PIN Photodiode)。此高分子聚合物四波長陣列波導光柵之輸入及輸出埠光學界面,包含輸入端:雷射與高分子聚合物光波導之界面、高分子聚合物光波導與單模光纖之界面;接收端:單模光纖與高分子聚合物光波導之界面、高分子聚合物光波導與1 x 4陣列PIN光電二極體之界面。上述光學界面之間皆無透鏡設計,藉以簡化封裝製程。且在最惡劣條件下,輸入端通道中傳輸光的能量為 -0.64 dBm大於MSA所規範至少 -6.5 dBm;接收端通道中傳輸光的能量為 -7.08 dBm大於MSA所規範至少 -11.5 dBm。
    以黃光製程製作長直高分子聚合物光波導,並藉由控制<100>矽基板晶向面之劈裂方向創造自然劈裂面,取代傳統與光波導端面研磨製程。設計光波導為矩形光波導,但實際製程為鐘形光波導。量測光波導尺寸W × H = 12 × 12 um^2的長直高分子聚合物光波導其平均插入損耗為 -7.23 dB,而模擬值為 -4.45 dB;波導尺寸W × H = 12 × 7 um^2的長直高分子聚合物光波導其平均插入損耗為 -8.13 dB,而模擬值為 -5.25 dB;波導尺寸W × H = 7 × 7 um^2的長直高分子聚合物光波導其平均插入損耗為 -9.95 dB,而模擬值為 -8.26 dB。


    In this thesis, a none-lens-coupling optical interfaces using polymer optical waveguides is proposed to simplify the optical system of Coarse Wavelength Division Multiplexing 4-channel optical transceiver (CWDM4 optical Tx/Rx) with an aggregate data rate of 100 Gbps. The optical interface at the transmitting end of CWDM4 optical Tx/Rx including 4-channel distributed feedback lasers aligned to a polymer-based 4-wavelength Array Waveguide Grating (AWG) Multiplexer integrated on the silicon substrate. Between Multiplexer and Demultiplexer, a single-mode fiber is adopted to align. The optical interface at the receiving end of CWDM4 optical Tx/Rx, a 4-channel PIN Photodiodes assembled on a glass substrate is aligned to the polymer-based 4-wavelength AWG Demultiplexer.
    The results of numerical simulation show that the optical efficiencies at interfaces of transmitting and receiving ends are -0.64 and -7.08 dBm, respectively for the worst cases. Both values are superior to the specifications of -6.5 and -11.5 dBm of Multi-Source Agreement (MSA) of CWDM4 optical Tx and Rx, respectively.
    The pattern of a straight polymer optical waveguide is developed using the photo-lithography process. By defining the end facets of waveguide parallel to the crystal plane direction of <100> silicon wafer and cleaving it along the <100> direction, the end facets of waveguide is formed directly without the polish process. Although the rectangular contour is designed for original waveguides, however bell-shaped optical waveguides is obtained due to over exposure in photo-lithography process. The average measured insertion losses of bell-shaped optical waveguides are -7.23, -8.13, and -9.95 dB for various end facets W×H of 12×12, 12×7, and 7×7 um2, respectively. The corresponding simulated results are -4.45, -5.25, and -8.26 dB, respectively.

    摘要 I Abstract II 致謝 III 目錄 IV 圖索引 V 表索引 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與研究目的 3 1-3 CWDM光學收發模組發展現況 6 1-4 以高分子聚合物設計CWDM單模光學收發引擎 9 第二章 高分子聚合物單模光學收發引擎設計與模擬 10 2-1 有限時域差分法及模擬軟體簡介 10 2-2 光學收發引擎之結構、元件規格、MSA規範 11 2-3 光源與單模光纖之模擬 17 2-4 輸出輸入埠光學界面之模擬 19 第三章 高分子聚合物光波導製程結果 31 3-1 高分子聚合物光波導製程 31 3-2 高分子聚合物光波導之製作結果與分析 35 第四章 高分子聚合物光波導量測 36 4-1 高分子聚合物光波導量測架構簡介 36 4-2 高分子聚合物光波導量測結果分析 37 第五章 結論 42 參考文獻 43

    [1] J.Clement, “Global number of internet users 2005-2018”, Statista. Jan 2019.
    [2] 福永勇二,“MIS一定要懂的網路技術知識,旗標科技股份有限公司”,May 2018
    [3] 李揚漢、許立根、洪鴻文、曹士林,“光纖通信網路”,教育部顧問室"通訊科技人才培育先導型計畫,2006
    [4] 鄒志偉,“光纖通訊”,五南出版社,April 2011
    [5] “Gigalight Optical Transceivers Catalog”, Shenzhen Gigalight Technology Co.,Ltd, August 2018
    [6] Alice. Gui, “100G Optical Transceivers Links: PSM4 vs CWDM4”, http://www.cables-solutions.com/100g-optical-transceivers-links-psm4-vs-cwdm4.html , Feb 2017
    [7] 林山霖,“平面光波導技術及其應用”,CTIMES,Feb 2003
    [8] Yu LIU, Hao-tian BAO,Yi-ming ZHANG, “1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA”, Frontiers of Information Technology & Electronic Engineering 2019
    [9] Yoshiyuki,Manabu Oguma,Toshihide Yoshimatsu, “Compact High-Responsivity Receiver Optical Subassembly With a Multimode-Output-Arrayed Waveguide Grating for 100-Gb/s Ethernet” , Journal of Lightwave Technology 2015
    [10] 王崗嶸, “光通訊主動元件產業現況及發展”,CTIMES,Sep 2001
    [11] K.S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE, 1966
    [12] John Wiley & Sons, “Introduction to Optical Waveguide Analysis”, 2001
    [13] Xin Chen, Jason E. Hurley, “Demonstration of Full System Reaches of 100G SR4, 40GsWDM, and 100G CWDM4 Transmissions over Universal Fiber”, IEEE, 2016
    [14] T. Nakajima, T. Fukamachi, “25.8 Gbps Error Free Transmission over 10 km at Wavelength from 1271 to 1331 nm by Uncooled (25 to 85℃) Directly Modulated DFB Lasers for 100G-CWDM4”, Optical Society of America, 2015
    [15] M.A. Wistey, S.R. Bank, H.B. Yuen, “Monolithic, GaInNAsSb VCSELs at 1.46 lm on GaAs by MBE”, ELECTRONICS LETTERS, 2003
    [16] “241S-type Data Sheet”, AVAGO TECHNOLOGIES, 2016
    [17] 李銘淵, “光纖通信概論第二版”,全華圖書,2009
    [18] “LPD3030-4 Data Sheet”, BROADCOM, 2017
    [19] “ITU-T G.652 Characteristics of a single-mode optical fibre and cable 9th”, International Telecommunication Union, 2016
    [20] “Corning SMF-28 Ultra Optical Fiber Product Information”, Corning, 2014
    [21] “Processing Guidelines – OrmoCore and OrmoClad”, Micro Resist Technology, 2016
    [22] David Lewis, JDSU, “100G CWDM4 MSA Technical Specifications 2km Optical Specifications”, MSA, 2014
    [23] A. Klehr, F. Bugge, G. Erbert, “High power broad area 808 nm DFB lasers for pumping solid state lasers”, Proc. of SPIE Vol. 6133, 2006
    [24] Niranjan Sahu, B Parija, S Panigrahi, “Fundamental understanding and modeling of spin coating process : A review”, Indian J. Phys., 2009
    [25] MOHAMMAD SYUHAIMI AB-RAHMAN, FAZLINDA AB-AZIZ, NOOR AZIE AZURA MOHD ARIF, “The study of the good polishing method for polymer SU-8 waveguide”, Optica Applicata, Vol. XXXIX, No. 3, 2009
    [26] 蕭宏,“半導體製程技術導論 第二版”,全華圖書,2012

    QR CODE
    :::