跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴慶隆
Ching-Lung Lai
論文名稱: 矽基平面式梯度折射率微透鏡於單模光纖收發器之研究
指導教授: 張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 93
語文別: 中文
論文頁數: 66
中文關鍵詞: 平面式梯度折射率微透鏡電漿輔助化學氣相沈積
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了ㄧ種結合了微光學平台(micro optical bench,MOB)技術的新型光耦合器,稱之為平面式梯度折射率微透鏡(planar gradient-index micro lens)。我們利用現有半導體製程技術,製作矽基平面式微光學元件,應用於雷射二極體-光纖耦合模組,使其具有可批次製造、高對位精準度與高耦合效率之優點。
    在設計上,雷射二極體到單模光纖的耦合效率達44.23%。而在元件的製程上,藉由改變電漿輔助化學氣相沈積(PECVD)的N2O/SiH4氣體流量比,成長具有梯度折射率變化的氮氧化矽膜,並利用先進氧化層蝕刻機(AOE)針對氮氧化矽材料進行深乾蝕刻。最後,我們量得雷射二極體到單模光纖耦合效率為5.1%。


    論文摘要 Ⅰ 目錄 Ⅱ 圖索引 Ⅴ 表索引 Ⅷ 第一章 緒論 1 1-1 雷射二極體-光纖耦合模組技術 1 1-1-1 出光模態轉換雷射 2 1-1-2 楔型光纖 4 1-1-3 透鏡光纖 4 1-1-4 分離式透鏡耦合 5 1-1-5 耦合技術的比較 6 1-2 論文大綱與架構 7 第二章 平面式梯度折射率微透鏡元件與系統 9 2-1 高斯光束的基本特性 9 2-2 兩個高斯光束的耦合效率分析 11 2-3 梯度折射率透鏡 15 2-4 平面式梯度折射率微透鏡耦光系統 17 第三章 氮氧化矽薄膜成長及特性分析 23 3-1 電漿輔助化學氣相沈積工作原理 23 3-2 材料成長 25 3-3 材料特性分析 27 3-3-1 折射率分析 27 3-3-2 沉積速率分析 28 3-3-3 穿透光譜量測與分析 29 第四章 元件製作 31 4-1 平面式梯度折射率微透鏡元件製作流程 31 4-1-1 PECVD成長氮氧化矽 32 4-1-2 光微影及Ni蒸鍍定義微透鏡的圖案 36 4-1-3 乾蝕刻微透鏡及去除殘餘的Ni 37 4-2 平面式矽微透鏡元件製作流程 38 4-2-1 光微影 40 4-2-2 乾蝕刻平面型矽微透鏡及去除殘餘的光阻 40 4-3 量測試片的加工 42 第五章 元件特性量測 44 5-1 聚焦特性量測 44 5-2 雷射二極體-平面式梯度折射率微透鏡-光纖耦合效率量測 48 第六章 結論 51 參考文獻 53

    [1] W. T. Chen, and L. A. Wang, “Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating,” IEEE Photon. Technol. Lett., 12, 501, 2000.
    [2] I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Select. Topics Quant. Electron., 3, 1308, 1997.
    [3] B. Hubner, G. Vollrath, R. Ries, C. Greus, H. Janning, E. Ronneberg, E. Kuphal, B. Kempf, R. Gobel, F. Fiedler, R. Zengerle, and H. Burkhard, “Laser diodes with integrated spot-size transformer as low-cost optical transmitter elements for telecommunications,” IEEE J. Select. Topics Quant. Electron., 3, 1372, 1997.
    [4] G. A. Vawter, R. E. Smith, H. Hou, and J. R. Wendt, “Semiconductor laser with tapered-rib adiabatic-following fiber coupler for expanded output-mode diameter,” IEEE Photon. Technol. Lett., 9, 425, 1997.
    [5] X. Yan, M. L. Masanovic, E. J. Skogen, Z. Hu, D. J. Blumenthal, and L. A. Coldren, “Optical mode converter integration with InP-InGaAsP active and passive waveguides using a single regrowth process,” IEEE Photon. Technol. Lett., 14, 1249, 2002.
    [6] T. Wongcharoen, B. M. A. Rahman, M. Rajarajan, and K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol., 19, 708, 2001.
    [7] Y. Fu, N. K. A. Bryan, and O. N. Shing, “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photon. Technol. Lett., 12, 1213, 2000.
    [8] H. Yoda, and K. Shiraishi, “A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers,” J. Lightwave Technol., 19, 1910, 2001.
    [9] Z. Tang, R. Zhang, S. K. Mondal, and F. G. Shi, “Optimization of fiber-optic coupling and alignment tolerance for coupling between a laser diode and a wedged single-mode fiber,” Opt. Commun. 199, 95, 2001
    [10] K. Shiraishi, and N. Hiraguri, “A lensed fiber with cascaded GI-fiber configuration for efficient coupling between LDs to single-mode fibers,” ECOC’98, 20-24, 355, 1998.
    [11] K. Shiraishi and S. I. Kuroo, “A new lensed-fiber configuration employing cascaded GI-fiber chips,” J. Lightwave Technol., 18, 787, 2000.
    [12] S. K. Mondal, S. Gangopadhyay, and S. Sarkar, “Analysis of an upside-down taper lens and from a single-mode step-index fiber,” Appl. Opt., 37, 1006, 1998.
    [13] R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt., 36, 3435, 1997.
    [14] M. Sumida, and K. Takemoto, “Lens aberration effect on a laser-diode-to-single-mode-fibre coupler,” Electron. Lett., 18, 586, 1982.
    [15] R. G. Wilson, “Ball-lens coupling efficiency for laser-diode to single-mode fiber: comparison of independent studies by distinct methods,” Appl. Opt., 37, 3201, 1998.
    [16] Y. Fu, and N. K. A. Bryan, “Hybrid microdiffractive-microrefractive lens with a continuous relief fabricated by use of focused-ion-beam milling for single-mode fiber coupling,” Appl. Opt., 40, 5872, 2001.
    [17] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, inc. New York, 1991)
    [18] W. B. Joyce, and B. C. Deloach, “Alignment of Gaussian beams,” Appl. Opt., 23, 4187, 1984.
    [19] L. A. Wang, and C. D. Su, “Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber,” J. Lightwave Technol., 14, 2757, 1996.
    [20] W. T. Chen, and L. A. Wang, “Out-of-plane optical coupling between an elliptical Gaussian beam and an angled sing-mode fiber,” J. Lightwave Technol., 16, 1589, 1998.
    [21] G. L. Bona, W. E. Denzel, B. J. Offrein, R. Germann, H. W. M. Salemink, and F. Horst, “Wavelength division multiplexed add/drop ring technology in corporate backbone networks,” Opt. Eng., 37, 3218, 1999.
    [22] R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Select. Topics Quant. Electron., 4, 930, 1998.
    [23] M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems,” IEEE Photon. Technol. Lett., 9, 1238, 1997.
    [24] D. R. Beltrami, J. D. Love, A. Durandet, A. Samoc, and C. J. Cogswell, “Fabrication and characterization of a planar gradient-index, plasma-enhanced chemical vapor deposition lens,” Appl. Opt., 36, 7143, 1997.
    [25] T. Baak, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt., 21, 1069, 1982.
    [26] M. I. Alayo, I. Pereyra, and M. N. P. Carreno, “Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperatures,” Thin Solid Films, 332, 40, 1998.
    [27] M. S. Haque, H. A. Naseem, and W. D. Brown, “Characterization of High Rate Deposited PECVD Silicon Dioxide Films for MCM Applications,” J. Electrochem. Soc., 142, 3864, 1995.
    [28] M. S. Haque, H. A. Naseem, and W. D. Brown, “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability,” Thin Solid Films, 308, 68, 1997.
    [29] M. I. Alayo, I. Pereyra, W. L. Scopel, and M. C. A. Fantini, “On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films,” Thin Solid Films, 402, 154, 2002.
    [30] F. Ay, and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials, 26, 33, 2004.

    QR CODE
    :::