| 研究生: |
林玫君 Mei-Chun Lin |
|---|---|
| 論文名稱: |
多使用者正交分頻多重接取系統下使用干擾排列技術之資源配置演算法 Efficient Methods for Resource Allocation and Interference Alignment in OFDMA Systems |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 干擾排列 、使用者選擇 、多輸出多輸入 、資源配置 、異質網路 |
| 外文關鍵詞: | interference alignment, UE selection, MIMO, resource allocation, heterogeneous network |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對以多傳送天線多接收天線正交分頻多重接取系統,使用干擾排列技術,提出資源配置演算法讓系統吞吐量最大化。干擾消除被視為一個重要的技術,可以同時消除細胞間的干擾及不同使用者間的干擾,去加強整個系統的吞吐量。在執行干擾排列之前,系統必須選擇使用者組合來排列干擾。干擾排列之後,每一個使用者可以在沒有干擾的情況下接收到想要的訊號。由於設計干擾排列,將會把資源配置的問題變得與以往不同且困難。
我們針對干擾排列的架構,對每一個資源上的使用者的選擇做進一步的研究。首先,我們提出以干擾排列的設計為根基的方法,考慮接收端的束波成型向量,可以使得每個使用者得到比較好的吞吐量。 再者,我們設計兩種疊代的方案,更進一步的提升系統的表現。我們將使用者組合動態的調整以達到最大的系統吞吐量。模擬結果顯示,以干擾排列的設計為根基的方法比以往的演算法有更好的表現。此外,本文提出兩種方法利用疊代的概念可以接近最佳解,而計算複雜度也低於最佳解。且兩種方法的疊代次數是相當小的。
This paper considers resource allocation methods to achieve the maximum system throughput for a MIMO OFDMA system with an interference alignment technique. Interference alignment is considered as an important technique that could eliminate inter-cell interference and inter-user interference, and would enhance the system throughput. Before performing interference alignment, the system has to select paired user equipments that could align the interference signals. Consequently, each user equipment could receive the desired signal without interference. Owing to the design of interference alignment beamforming, the resource allocation problem becomes different and difficult. Based on the structure of interference alignment considered in this paper, the selection of the paired user equipments for each resource block is further investigated. This paper first presents the user equipment selection based on interference alignment. A proposed interference alignment-based selection scheme with a low computational complexity is developed by using the receive beamforming vectors, so that each resource block may be assigned to the paired user equipments that would have better system throughput. In addition, we design Sequential search scheme and Compete-and-compare scheme to further improve the performance. The paired user equipments are adjusted dynamically to achieve the maximum system throughput. Simulation results demonstrate that the proposed interference alignment-based selection scheme outperforms the existing algorithms. The performance of Sequential search scheme and Compete-and-compare scheme is very close to that of the optimal solution with an exhaustive search while the computational complexity is greatly reduced. The number of iterations in Sequential search scheme and Compete-and-compare scheme to obtain a solution is also pretty small.
Reference
[1] “IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems,” IEEE, Tech. Rep. 802.16, Oct. 2004.
[2] E. Dahlman, S. Parkvall and J. Skold, “3G Evolution: HSPA and LTE for mobile Broadband,” 2nd Edition, 2008
[3] S. Sesia, I. Toufik, and M. Barker, LTE- the UMTS Long Term Evolution: From Theory to Practice, UK: John Wiley & Sons Inc, Apr. 2009.
[4] Bjerke, B.A., “LTE-advanced and evolution of LTE deployments,” IEEE Wireless Commun.vol. 18, no. 5, pp. 4-5, Oct. 2011.
[5] G. Amitava, R. Rapeepat, M. Bishqarup, M. Nitin, and T. Tim, “LTE-advanced: next-generation wireless broadband technology,” IEEE —Submitted for publication),” IEEE Wireless Commun.vol .17, no. 3, pp. 10-22, Jun. 2010.
[6] C. Gen, Y. Dacheng, Y. Xuan, and Z. Zin, “A downlink joint power control and resource allocation scheme for co-channel macrocell-femtocell networks,” in Proc. IEEE Wireless Commun. And Networking Conf., pp. 281-286, Mar. 2009.
[7] K. Quan, S. Joachim, and D. Heinz, “Joint Base-Station Association, Channel Assignment, Beamforming and Power Control in Heterogeneous Networks,” in Proc. IEEE Veh. Tech. Conf.-Spring, pp.1-5, May 2012.
[8] P. Jiyong, W. Jun, W. Dongyao, S. Gang, J. Qi, and L. Jianguo, “Optimized time-domain resource partitioning for enhanced inter-cell interference coordination in heterogeneous networks,” in Proc IEEE Wireless Commun. And Networking Conf., pp.1613-1617, Apr. 2012.
[9] K. Balachandran, Kang, J. H., Karakayali K. and Rege K., “Cell selection with downlink resource partitioning in heterogeneous networks,” IEEE int. Conf. Commun. (ICC), pp. 1-6, Jun. 2011.
[10] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the K-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008.
[11] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “Approaching the capacity of wireless networks through distributed interference alignment,” preprint. Available: http://arxiv.org/abs/0803.3816.
[12] M.A. Maddah-Ali, A. S. Motahari, A. K. Khandani, “Communication over MMO X chennles: interference alignment, decomposition and performance analysis,” IEEE Trans. Inf. Theory, vol. 54, pp. 3457-3470, Aug. 2008.
[13] S. Gollakota, S. D. Perli, and D. Katabi, “Interference Alignment and Cancellation,” SIGCOMM , Aug. 2009.
[14] K. Gomadam, V.R. Cadambe, and S.A. Jafar, “Approaching the capacity of wireless networks through distributed interference alignment,” in proc. IEEE Global Telecommunications Conf. (GLOBECOM), pp. 1-6, 2008.
[15] I. Santamaria, O.Gonzalez,R.W.H. , Jr., and S.W. Peters, “Maximum sum-rate interference alignment algorithms for MIMO channels,” in Proc. IEEE Global Telecommunications Conf. (GLOBECOM), Dec. 2010.
[16] P. Mohapatra, K. E. Nissar, and C. R. Murthy, “Interference alignment algorithms for the K users constant MIMO interference channel,” IEEE Trans. Signal Processing, vol. 59, no. 11, pp.5499-5508, Nov. 2011.
[17] F. Pantisano, M. Bennis, W. Saad, and M. Debbad, “Cooperative interference alignment in femtocell networks,” in Proc. IEEE Global Telecommunications Conf. pp. 1-6, Dec. 2011.
[18] W. Shin, N. Lee, W. Noh, H-H. Choi, B. Clerckx, C. Shin, and K. Jang, “Hierarchical interference alignment for Heterogeneous networks with multiple antennas,” in Proc. IEEE int. Conf. Commun. (ICC) pp. 1-6, Jun. 2011.
[19] H-H. Lee and Y-C. Ko, “ Linear transceiver design based on interference alignment for MIMO heterogeneous networks,” in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Commun. (PIMRC), pp. 1645-1650, Sept. 2012.
[20] W. Shin, N. Lee, J-B. Lim, C. Shin, and K. Jang, “On the design of interference alignment scheme for two-cell MIMO interfering broadcast channels,” IEEE Trans. Wireless Commun. vol. 10, no. 2, pp. 437-442, Feb. 2011.
[21] J. Tang, S. Lambotharan, "Interference Alignment Techniques for MIMO Multi-Cell Interfering Broadcast Channels," in Proc. IEEE Trans., vol. 61, no. 1, pp.164-175, Jan. 2013.
[22] J. H. Lee and W. Choi, “Interference alignment by opportunistic user selection in 3-user MIMO interference channels,” in Proc. IEEE int. Conf. Commun. (ICC) pp. 1-5, Jun. 2011.
[23] J. H. Lee and W. Choi, “Opportunistic interference aligned user selection in multiuser MIMO interference channels,” IEEE Global Telecommunications Conf. (GLOBECOM), pp. 1-5, Dec. 2010.
[24] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, and B. L. Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Trans. Signal Processing, vol. 54, no. 9, pp. 3658-3663, Sept. 2006.
[25] X. Zhang, E. A. Jorswieck, B. Ottersten, and A. Paulraj, “User selection schemes in multiple antenna broadcast channels with guaranteed performance,” IEEE Signal Processing Advances in Wireless Commun. (SPAWC), pp.1-5, Jun. 2007.
[26] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE Journal vol. 24, no. 3, pp. 528-541, Mar. 2006.
[27] J. Yang, S. Jang, and D. K. Kim, “Sum rate approximation of zeros-forcing beamforming with semi-orthogonal user selection,” Commun. and Network Journal, vol. 12, no. 3, pp.222-230, Jun. 2010.
[28] M. P. Holmes, A. G. Gray, and C. L. Isbell, “Fast SVD for largescale matrices,” College of Computing, Georgia Institute of Technology, Atlanta, GA.
[29] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) requirements for LTE Pico Node B, 3GPP, TR 36.931 V9.0.0, May. 2011.
[30] K. Ko and J. Lee, “Multiuser MIMO user selection based on chordal distance,” IEEE Trans. Commun., vol. 60, no. 3, pp. 649-654, Mar. 2012.
[31] N. Chayat, “Updated submission template for TGa – revision 2,” Doc. IEEE 802.11-98/156r2, Apr. 1998.
[32] Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9), 3GPP, TS 36.814 V9.0.0, Mar. 2010.
[33] M. Wahaj, A. Vastberg and T. Elder, “Energy Efficiency Improvement Through Pico Base Stations For A Green Field Operator,” in Proc. IEEE Wireless Commun. And Networking Conf., pp. 2203-2208, Apr. 2012.