| 研究生: |
陳岳陽 Yue-Yang Chen |
|---|---|
| 論文名稱: |
智慧型穿戴式裝置創新感知特徵對使用者滿意度與持續使用意圖影響之研究 The Study on the Effect of the Perceived Characteristics of Innovation of Smart Wearable Devices Toward User Satisfaction and Continuance Intention |
| 指導教授: | 李小梅 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 智慧型穿戴式裝置 、科技接受模型 、創新擴散理論 、滿意度 、持續使用意圖 |
| 外文關鍵詞: | Smart wearable devices, technology acceptance model, innovation diffusion theory, user satisfaction, intention of continue use |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著智慧型穿戴式裝置與物聯網的興起,市場上隨處可見各大品牌所推出之智慧型穿戴式裝置,根據Gartner預測,2019年全球穿戴式裝置的市場出貨量將達到2億2500萬台,而相較於歐美國家而言,台灣的智慧型穿戴式裝置市場目前仍屬於成長階段,隱藏著龐大商機,故引發本研究探討的動機。
本研究在確認研究方向以及閱讀與彙整大量相關文獻後,建立研究架構,透過科技接受模型(Technology Acceptance Model, TAM)的兩大感知性探討是否會影響使用者的滿意度以及持續使用意圖,此外,使用創新擴散理論(Innovation Diffusion Theory, IDT)的感知創新特徵,包括相對優勢、兼容性、結果可證明性、可觀察性,做為影響感知有用性與易用性的前因,探討模型構念間的影響。
本研究在PTT實業坊與臉書社群平台針對智慧型穿戴式裝置之使用者進行網路問卷調查,蒐集254份有效問卷。在使用統計軟體SmartPLS3.0與IBM SPSS Amos做問卷信效度與路徑分析後,研究結果顯示,使用者對於穿戴式裝置的感知有用性與感知易用性會正向影響滿意度與持續使用意圖,而滿意度也會正向影響持續使用意圖。在感知創新特徵方面,唯獨可觀察性不會對感知有用性與易用性產生影響。
在分析與討論完結果後,本研究提出學術上建議,使得後續研究能夠更臻完善。在實務上,為了提高使用者之滿意度與持續使用意圖,本研究建議宜提高使用者對穿戴式裝置之實用性與功能性,也要讓使用者能對穿戴式裝置更加熟悉並且認為其容易上手。而對於穿戴式裝置本身,廠商或業者必須凸顯其與先前裝置的相對優勢、與使用者生活或價值觀相符並讓使用者明確了解穿戴式裝置的優劣。本研究並進一步提出相關之限制與未來研究方向之建議,供業者參考。
關鍵詞:智慧型穿戴式裝置、科技接受模型、創新擴散理論、滿意度、持續使用意圖
With the rise of smart wearable devices and the Internet of Things, gadgets from major brands can be seen wherever in the market. As indicated by Gartner's forecast, the worldwide market for wearable gadgets will reach 225 million in 2019. On the other hand, Taiwan's smart wearable devices market, in contrast to Europe and the United States, still has room for growth with immense unexplored opportunities. This potential is what triggered the inspiration for this study.
With the direction of research clear, a framework of this study was built after reviewing extensive amounts of relevant literatures to explore whether the two perceptions of the Technology acceptance model (TAM) will affect users’ satisfaction and turn them into repeat customers.
Furthermore, the innovation diffusion theory (IDT)'s perceived innovative features including comparative advantage, compatibility, verifiability, and observability were used as cause relations for the perceived usefulness and ease of use, and to investigate the impact of model construction.
This study conducted an online survey covering smart wearable devices users at PTT and FACEBOOK, and collected 254 valid questionnaires. The statistical software SmartPLS3.0 and IBM SPSS Amos were used to conduct reliability check and path analysis of the questionnaires. The results showed that the users’ perceived usefulness and perceived ease of use of the wearable device will positively affect satisfaction and their intention of continue use. And satisfaction also affects the users’ intention of continue use. In terms of perceived innovation characteristics, observability alone does not affect perceived usefulness and ease of use.
In the wake of the outcomes, this study proposes academic proposals that make consequent research progressively complete.
In practice, to improve user satisfaction and intention of continue use, this study suggests that the practicality and functionality of the wearable device are most crucial. The ease of start is also important. For the wearable device itself, the vendors or the manufacturer must feature its relative advantages with the past devices, matching the user's lifestyle or values, and let the users clearly understand the pros and cons of the wearable device. This study further proposes relevant limitations and recommendations for future research directions as a reference to the industry.
Keywords: Smart wearable devices, technology acceptance model, innovation diffusion theory, user satisfaction, intention of continue use.
一、英文文獻
﹝1﹞ Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS quarterly, 227-247.
﹝2﹞ Agarwal, R. P. (2000). Difference equations and inequalities: theory, methods, and applications. CRC Press.
﹝3﹞ Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.
﹝4﹞ Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies?. Decision sciences, 30(2), 361-391.
﹝5﹞ Agarwal, R., Sambamurthy, V., & Stair, R. M. (2000). The evolving relationship between general and specific computer self-efficacy—An empirical assessment. Information systems research, 11(4), 418-430
﹝6﹞ Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888..
﹝7﹞ Akturan, U., & Tezcan, N. (2012). Mobile banking adoption of the youth market: Perceptions and intentions. Marketing Intelligence & Planning, 30(4), 444-459.
﹝8﹞ Al-Hawari, M. A., & Mouakket, S. (2010). The influence of technology acceptance model (tam) factors on students'e-satisfaction and e-retention within the context of uae e-learning. Education, Business and Society: Contemporary Middle Eastern Issues, 3(4), 299-314.
﹝9﹞ Amin, M., Rezaei, S., & Abolghasemi, M. (2014). User satisfaction with mobile websites: the impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust. Nankai Business Review International, 5(3), 258-274.
﹝10﹞ Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411.
﹝11﹞ Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
﹝12﹞ Baroudi, J. J., & Orlikowski, W. J. (1988). A short-form measure of user information satisfaction: a psychometric evaluation and notes on use. Journal of Management Information Systems, 4(4), 44-59.
﹝13﹞ Benslimane, Y., & Yang, Z. (2007). Linking commercial website functions to perceived usefulness: A free disposal hull approach. Mathematical and Computer Modelling, 46(9-10), 1191-1202.
﹝14﹞ Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.
﹝15﹞ Bhattacherjee, A., & Barfar, A. (2011). Information technology continuance research: current state and future directions. Asia Pacific Journal of Information Systems, 21(2), 1-18.
﹝16﹞ Bhattacherjee, A., Perols, J., & Sanford, C. (2008). Information technology continuance: A theoretic extension and empirical test. Journal of Computer Information Systems, 49(1), 17-26.
﹝17﹞ Bienstock, C. C., & Royne, M. B. (2010). Technology acceptance and satisfaction with logistics services. The International Journal of Logistics Management, 21(2), 271-292.
﹝18﹞ Billinghurst, M., & Starner, T. (1999). Wearable devices: new ways to manage information. Computer, 32(1), 57-64.
﹝19﹞ Blumberg, B., Cooper, D. R., & Schindler, P. S. (2008). Business research methods (Vol. 2). London: McGraw-Hill Higher Education.
﹝20﹞ Bruner II, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of business research, 58(5), 553-558.
﹝21﹞ Calisir, F., & Calisir, F. (2004). The relation of interface usability characteristics, perceived usefulness, and perceived ease of use to end-user satisfaction with enterprise resource planning (ERP) systems. Computers in human behavior, 20(4), 505-515.
﹝22﹞ Canhoto, A. I., & Arp, S. (2017). Exploring the factors that support adoption and sustained use of health and fitness wearables. Journal of Marketing Management, 33(1-2), 32-60.
﹝23﹞ Chatterjee, S., Kar, A. K., & Gupta, M. P. (2018). Success of IoT in smart cities of India: An empirical analysis. Government Information Quarterly, 35(3), 349-361.
﹝24﹞ Chau, P. Y., & Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach. Decision sciences, 32(4), 699-719.
﹝25﹞ Chen, L., Gillenson, L., & Sherrell, L. (2002). Enticing online consumers: an extended technology acceptance perspective, 39 (8), 709–719. doi: 10.1016. S0378-7206 (01), 00127-6.
﹝26﹞ Chuah, S. H. W., Rauschnabel, P. A., Krey, N., Nguyen, B., Ramayah, T., & Lade, S. (2016). Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276-284.
﹝27﹞ Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
﹝28﹞ Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
﹝29﹞ George, A., & Kumar, G. G. (2013). Antecedents of customer satisfaction in internet banking: Technology acceptance model (TAM) redefined. Global Business Review, 14(4), 627-638.
﹝30﹞ Hair, J. F., Anderson, R. E., Tatham, R. L., & William, C. (1998). Black (1998), Multivariate data analysis.
﹝31﹞ Hardgrave, B. C., Davis, F. D., & Riemenschneider, C. K. (2003). Investigating determinants of software developers' intentions to follow methodologies. Journal of Management Information Systems, 20(1), 123-151.
﹝32﹞ Hardgrave, B. C., Davis, F. D., & Riemenschneider, C. K. (2003). Investigating determinants of software developers' intentions to follow methodologies. Journal of Management Information Systems, 20(1), 123-151.
﹝33﹞ Hong, J. C., Lin, P. H., & Hsieh, P. C. (2017). The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Computers in Human Behavior, 67, 264-272.
﹝34﹞ Hsiao, C. H., Chang, J. J., & Tang, K. Y. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33(2), 342-355.
﹝35﹞ Hsiao, K. L., & Chen, C. C. (2018). What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telematics and Informatics, 35(1), 103-113.
﹝36﹞ Isaac, O., Abdullah, Z., Ramayah, T., & Mutahar, A. M. (2017). Internet usage within government institutions in Yemen: an extended technology acceptance model (TAM) with internet self-efficacy and performance impact. Science International, 29(4), 737-747.
﹝37﹞ Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS quarterly, 183-213.
﹝38﹞ Kim, K. J., & Shin, D. H. (2015). An acceptance model for smart watches: implications for the adoption of future wearable technology. Internet Research, 25(4), 527-541.
﹝39﹞ Kulviwat, S., Bruner II, G. C., Kumar, A., Nasco, S. A., & Clark, T. (2007). Toward a unified theory of consumer acceptance technology. Psychology & Marketing, 24(12), 1059-1084.International Review of Management and Business Research, 6(2), 595.
﹝40﹞ Lee, Y. H. (2007). Exploring key factors that affect consumers to adopt e-reading services. unpublished master thesis, Huafan University.
﹝41﹞ Lee, Y. H., Hsieh, Y. C., & Hsu, C. N. (2011). Adding innovation diffusion theory to the technology acceptance model: Supporting employees' intentions to use e-learning systems. Journal of Educational Technology & Society, 14(4), 124-137.
﹝42﹞ Lee, Y. H., Hsieh, Y. C., & Hsu, C. N. (2011). Adding innovation diffusion theory to the technology acceptance model: Supporting employees' intentions to use e-learning systems. Journal of Educational Technology & Society, 14(4), 124-137.
﹝43﹞ Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & management, 40(3), 191-204.
﹝44﹞ Liaw, S. S., & Huang, H. M. (2013). Perceived satisfaction, perceived usefulness and interactive learning environments as predictors to self-regulation in e-learning environments. Computers & Education, 60(1), 14-24.
﹝45﹞ Lim, S. C., Shin, J., Kim, S. C., & Park, J. (2015). Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors. Sensors, 15(7), 16642-16653.
﹝46﹞ Mann, S. (1998, May). Wearable computing as means for personal empowerment. In Proc. 3rd Int. Conf. on Wearable Computing (ICWC) (pp. 51-59).
﹝47﹞ Martínez-Caro, E., Cegarra-Navarro, J. G., García-Pérez, A., & Fait, M. (2018). Healthcare service evolution towards the Internet of Things: An end-user perspective. Technological Forecasting and Social Change, 136, 268-276.
﹝48﹞ Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191.
﹝49﹞ Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
﹝50﹞ Nascimento, B., Oliveira, T., & Tam, C. (2018). Wearable technology: What explains continuance intention in smartwatches?. Journal of Retailing and Consumer Services, 43, 157-169.
﹝51﹞ Nov, O., & Ye, C. (2009). Resistance to change and the adoption of digital libraries: An integrative model. Journal of the American Society for Information Science and Technology, 60(8), 1702-1708.
﹝52﹞ Park, S., & Jayaraman, S. (2003). Enhancing the quality of life through wearable technology. IEEE Engineering in medicine and biology magazine, 22(3), 41-48.
﹝53﹞ Pentland, A. (2004). Healthwear: medical technology becomes wearable. Computer, 37(5), 42-49.
﹝54﹞ Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Richness versus parsimony in modeling technology adoption decisions—understanding merchant adoption of a smart card-based payment system. Information systems research, 12(2), 208-222.
﹝55﹞ Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Richness versus parsimony in modeling technology adoption decisions—understanding merchant adoption of a smart card-based payment system. Information systems research, 12(2), 208-222.
﹝56﹞ Putzer, G. J., & Park, Y. (2010). The effects of innovation factors on smartphone adoption among nurses in community hospitals. Perspectives in Health Information Management/AHIMA, American Health Information Management Association, 7(Winter).
﹝57﹞ Putzer, G. J., & Park, Y. (2010). The effects of innovation factors on smartphone adoption among nurses in community hospitals. Perspectives in Health Information Management/AHIMA, American Health Information Management Association, 7(Winter).
﹝58﹞ Revels, J., Tojib, D., & Tsarenko, Y. (2010). Understanding consumer intention to use mobile services. Australasian Marketing Journal (AMJ), 18(2), 74-80.
﹝59﹞ Rogers, E. M. (1962). 1995. Diffusion of Innovations. New York.
﹝60﹞ Rogers, E. M. (1995). Diffusion of Innovations: modifications of a model for telecommunications. In the diffusion of innovations in the telecommunication (pp. 25-38). Springer, Berlin, Heidelberg.
﹝61﹞ Rogers, E. M. (2003). Elements of diffusion. Diffusion of innovations, 5(1.38).
﹝62﹞ Salah, O., Ramadan, A. A., Sessa, S., El-Bab, A. M. F., Abo-Ismail, A., Zecca, M., ... & Fujie, M. (2014, October). Sit to stand sensing using wearable IMUs based on adaptive Neuro Fuzzy and Kalman Filter. In 2014 IEEE Healthcare Innovation Conference (HIC) (pp. 288-291). IEEE.
﹝63﹞ Sohn, S. Y., Kim, H. S., & Moon, T. H. (2007). Predicting the financial performance index of technology fund for SME using structural equation model. Expert Systems with Applications, 32(3), 890-898.
﹝64﹞ Straub, D. W. (1989). Validating instruments in MIS research. MIS quarterly, 147-169.
﹝65﹞ Straub, D., Keil, M., & Brenner, W. (1997). Testing the technology acceptance model across cultures: A three country study. Information & management, 33(1), 1-11.
﹝66﹞ Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management science, 42(1), 85-92.
﹝67﹞ Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
﹝68﹞ Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
﹝69﹞ Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
﹝70﹞ Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on engineering management, (1), 28-45.
﹝71﹞ Tran, T. C. T., & Cheng, M. S. (2017). Adding Innovation Diffusion Theory to Technology Acceptance Model: Understanding Consumers' Intention to Use Biofuels in Viet Nam.
﹝72﹞ Van Slyke, C., Lou, H., & Day, J. (2002). The impact of perceived innovation characteristics on intention to use groupware. Information Resources Management Journal (IRMJ), 15(1), 1-12.
﹝73﹞ Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
﹝74﹞ Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
﹝75﹞ Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
﹝76﹞ Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & management, 42(5), 719-729.
﹝77﹞ Wu, L. H., Wu, L. C., & Chang, S. C. (2016). Exploring consumers’ intention to accept smartwatch. Computers in Human Behavior, 64, 383-392
﹝78﹞ Zhang, N., Guo, X., & Chen, G. (2008). IDT-TAM integrated model for IT adoption. Tsinghua science and technology, 13(3), 306-311.
﹝79﹞ Zhang, N., Guo, X., & Chen, G. (2008). IDT-TAM integrated model for IT adoption. Tsinghua science and technology, 13(3), 306-311.
﹝80﹞ Zviran, M., Glezer, C., & Avni, I. (2006). User satisfaction from commercial web sites: The effect of design and use. Information & management, 43(2), 157-178.
二、網路文獻
﹝1﹞ Gartner, Inc. (2018). “Gartner Says Worldwide Wearable Device Sales to Grow 17 Percent in 2017” 取自:https://www.gartner.com/en/newsroom/press-releases/2017-08-24-gartner-says-worldwide-wearable-device-sales-to-grow-17-percent-in-2017
﹝2﹞ eMarketer(2018). “How Many Gen Xers Use Wearables?”. 取自:https://www.emarketer.com/content/how-many-gen-xers-use-wearables
﹝3﹞ Gartner, Inc. (2018). “Gartner Says Worldwide Wearable Device Sales to Grow 26 Percent in 2019” 取自:https://www.gartner.com/en/newsroom/press-releases/2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-
﹝4﹞ 資策會產業情報研究所(Market Intelligence & Consulting Institute, MIC)(2015). “2016全球智慧穿戴出貨逾1.3億支” 取自:https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=409
﹝5﹞ 資策會產業情報研究所(Market Intelligence & Consulting Institute, MIC)(2016). “2017通訊科技產業的九大應用發展趨勢” 取自:https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=440
﹝6﹞ 資策會產業情報研究所(Market Intelligence & Consulting Institute, MIC)(2017). “從2017兩大展會看智慧腕帶式裝置發展前景” 取自:https://mic.iii.org.tw/Industryobservation_MIC02views.aspx?sqno=246
﹝7﹞ 財團法人資訊工業策進會(2017) . “智慧穿戴 創新生活 解析智慧穿戴式裝置市場趨勢與創新產品應用” 取自:https://www.iii.org.tw/Focus/FocusDtl.aspx?f_type=2&f_sqno=Zdw7bw%2B50oGAn2GA6qArNg__&fm_sqno=13