跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂哲光
Jhe-guang Lyu
論文名稱: 中風復健遊戲之上肢運動指標設計與成效評估
The Design of Motion Indexes and Performance Analysis of Stroke Rehabilitation Games
指導教授: 蘇木春
Mu-Chun Su
葉士青
Shih-Ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 中風疾病復健運動指標成效評估虛擬實境
外文關鍵詞: stroke, rehabilitation, motion indexes, performance analysis, virtual reality
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據衛生署統計過去十幾年來醫療數據發現中風是目前台灣主要疾病之一,中風的發生主要是因為腦部受到損害而使腦神經衰退,近而造成身體活動不方便,也影響到日常生活狀況。所以最近中風的議題不斷被醫學界討論、研究,企圖尋找良好、有效率的醫療復健方式以及能反映出與中風病患身體狀況有相關性的臨床評估、復健成效。
    本研究主要針對中風上肢復健遊戲設計各項運動指標,希望透過這些指標能顯示出病患目前動作能力、反應程度,並且分析運動指標是否有明顯效果。另外,目前醫院流行的傳統評估量表: FMA、TEMPA、WMFT有些缺點,不是每一次運動復健都會進行傳統臨床評估,只有第一次復健、最後一次復健以及復健完經過一個月後追蹤評估,而且每次都花費很長時間。還有病患想要知道自己與其他人的差別、在有玩過此系統的人群中屬於哪種等級程度,因此建立新型評估方式希望能減輕物理治療師負擔、滿足病人需求。
    實驗結果顯示,部分運動指標對於中風復健遊戲有相關的影響性,透過運動評估與統計分析數據能了解病患有明確的進步程度以及與傳統評估量表分數有相關性,另外以類神經網路、支持向量機驗證新型評估方式的建立是有可行性。


    According to the past decades of medical data, Ministry of Health and Welfare has found that stroke was one of Taiwan's major diseases. The occurrence of stroke because of brain injury causing nerve cells are declined. Stroke seriously affects physical movement and the quality of daily life. So the medical profession have discussed and researched the issues of stroke in recent years, trying to find some well efficiency of medical rehabilitations, and performance analysis which can reflect conditions of the stroke patients.
    This study is focused on the design of motion indexes which are about rehabilitation systems of upper limbs, hoping to indicating abilities of stroke patients at present and wondering the performance analysis of these systems whether is useful or not. In addition, the hospital use currently traditional assessment scales that have some problems and need to spend long time. Some stroke patients also want to know what differences with other people when playing rehabilitation systems. Therefore, establishing new medical assessment methods to solve these problems, reduce burdens of Physiotherapist and fulfill expectations of stroke patient.
    The results of this study shows that part of the motion indexes for assessment method have considerable influences and stroke patients also have definite progress. Thus, using neural network and SVM to verify new medical assessment methods that is a certain degree of feasibility.

    目錄 中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 vi 表目錄 viii 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 7 1-3 研究目的 9 第二章 文獻回顧 12 2-1 現代科技結合中風復健相關研究 12 2-2 臨床評估相關研究 15 2-3 類神經網路、支持向量機應用於復健相關研究 16 第三章 研究方法 18 3-1 系統設計 18 3-1-1 籃球遊戲 19 3-1-2 拋接球遊戲 22 3-1-3 擦拭玻璃遊戲 24 3-2 實驗步驟與流程 27 3-2-1 病人收案標準 27 3-2-2 實驗流程 29 3-2-3 傳統評估量表 29 3-3 資料測量與分析 30 3-3-1 運動指標 30 3-4 分析方法 43 3-4-1 分析復健成效、驗證新型運動指標 43 3-4-2 K-means群聚分析 44 3-4-3 多層感知機(Multilayer Perceptron, MLP) 45 3-4-4 放射狀基底函數網路(radial basis function network, RBFN) 46 3-4-5 支持向量機(Support Vector Machine,SVM) 47 3-5 分析步驟流程 47 第四章 分析結果與討論 49 4-1 籃球遊戲 49 4-1-1 無母數統計 49 4-1-2 與傳統評估量表「前後測」相關分析 51 4-1-3 與傳統評估量表「後測-前測」相關分析 54 4-1-4 群聚分析 56 4-1-5 對K-Means群聚做相關分析 57 4-1-6 比較各種分類器之間差異性 59 4-2 拋接球遊戲 62 4-2-1 無母數統計 62 4-2-2 與傳統評估量表「前後測」相關分析 65 4-2-3 與傳統評估量表「後測-前測」相關分析 69 4-2-4 群聚分析 71 4-2-5 對K-Means群聚做相關分析 73 4-2-6 比較各種分類器之間差異性 75 4-3 擦拭玻璃遊戲 78 4-3-1 無母數統計 78 4-3-2 與傳統評估量表「前後測」相關分析 80 4-3-3 與傳統評估量表「後測-前測」相關分析 82 4-3-4 群聚分析 83 4-3-5 對K-Means群聚做相關分析 85 4-3-6 比較各種分類器之間差異性 87 第五章 結論 94 參考文獻 95

    參考文獻
    [1]V. L. Feigin, “Stroke epidemiology in the developing
    world,” The Lancet, Vol. 365, No. 9478, pp. 2160-2161,
    2005.
    [2]V. L. Feigin, C. M. Lawes, D. A. Bennett, and C. S.
    Anderson, “Stroke epidemiology: a review of
    population-based studies of incidence, prevalence, and
    case-fatality in the late 20th century,” The Lancet
    Neurology, Vol. 2, No.1, pp. 43-53, 2003.
    [3]G. D. Griffin, “Stroke, mTBI, Infection, Antibiotics
    and Beta Blockade: Connecting the Dots,” Medical
    Hypotheses, 2015.
    [4]Life Talk. [Online].
    Available: https://www.life.com.tw/?app=view&no=273613
    [5]Z. S. Huang, T. L. Chiang, and T. K. Lee, “Stroke
    Prevalence in Taiwan Findings From the 1994 National
    Health Interview Survey,” Stroke, Vol. 28, No. 8, pp.
    1579-1584, 1997.
    [6]C. A. Kernich, “Living with Stroke A Guide for
    amilies,” Neurology, Vol. 44, No. 10, pp. 1991-1991,
    1994.
    [7]M. Kelly-Hayes, A. Beiser, C. S. Kase, A. Scaramucci,
    R. B. Agostino, and P. A. Wolf, “The influence of
    gender and age on disability following ischemic
    stroke: the Framingham study,” Journal of Stroke and
    Cerebrovascular Diseases, Vol. 12, No. 3, pp. 119-126,
    2003.
    [8]B. M. Kissela, J. C. Khoury, K. Alwell, C. J. Moomaw,
    D. Woo, O. Adeoye, and D. O. Kleindorfer, “Age at
    stroke temporal trends in stroke incidence in a large,
    biracial population,” Neurology, Vol. 79, No. 17, pp.
    1781-1787, 2012.
    [9]H. C. Lin, Y. J. Lin, T. C. Liu, C. S. Chen, and W. T.
    Chiu, “Urbanization and stroke prevalence in Taiwan:
    analysis of a nationwide survey,” Journal of Urban
    Health, Vol. 84, No. 4, pp. 604-614, 2007.
    [10]S. E. Chiuve, K. M. Rexrode, D. Spiegelman, G.
    Logroscino, J. E. Manson, and E. B. Rimm, “Primary
    prevention of stroke by healthy lifestyle,”
    Circulation, Vol. 118, No. 9, pp. 947-954, 2008.
    [11]M. Fisher, A. Dávalos, A. Rogalewski, A. Schneider,
    and W. R. Schäbitz, “Toward a multimodal
    europrotective treatment of stroke,” Stroke, Vol. 37,
    No. 4, pp. 1129-1136, 2006.
    [12]K. J. Greenlund, W. H. Giles,Keenan, J. B. Croft, and
    G. A. Mensah, “Physician advice, patient actions, and
    health-related quality of life in secondary
    prevention of stroke trough diet and exercise,”
    Stroke, Vol. 33, No. 2, pp. 565-571, 2002.
    [13]S. Ahmed, N. E. Mayo, J. Higgins, N. M. Salbach, L.
    Finch, and S. L. Wood-Dauphinée, “The Stroke
    Rehabilitation Assessment of Movement (STREAM): a
    comparison with other measures used to evaluate
    effects of stroke and rehabilitation,” Physical
    therapy, Vol. 83, No. 7, pp. 617-630, 2003.
    [14]S. L. Wolf, C. J. Winstein, J. P. Miller, E. Taub,
    G.Uswatte, D. Morris, and Excite Investigators,
    “Effect of constraint-induced movement therapy on
    upper extremity function 3 to 9 months after stroke:
    the EXCITE randomized clinical trial,” Jama, Vol.
    296, No. 17, pp. 2095-2104, 2006.
    [15]S. M. Braun, A. J. Beurskens, P. J. Borm, T. Schack,
    and D. T. Wade, “The effects of mental practice in
    stroke rehabilitation: a systematic review,” Archives
    of physical medicine and rehabilitation, Vol. 87, No.
    6, pp. 842-852, 2006.
    [16]W. S. Lu, C. H. Wang, J. H. Lin, C. F. Sheu, and C.
    L. Hsieh, “The minimal detectable change of the
    simplified stroke rehabilitation assessment of
    movement measure,” Journal of rehabilitation
    medicine, Vol. 40, No. 8, pp. 615-619, 2008.
    [17]N. B. Lincoln, G. P .Mulley, A. C. Jones, E. McGuirk,
    W. Lendrem, and J. R. A. Mitchell, “Effectiveness of
    speech therapy for aphasic stroke patients: a
    randomised controlled trial,” The Lancet, Vol. 323,
    No. 8388, pp. 1197-1200, 1984.
    [18]中山醫誌. [Online].
    Available:http://medicineinfocsh.blogspot.tw/2015/02/blog-post_33.html
    [19]S. Saini, D. R. A. Rambli, S. Sulaiman, M. N.
    Zakaria, and S. R. M. Shukri, “A low-cost game
    framework for a home-based stroke rehabilitation
    system,” ICCIS, Vol. 1, pp. 55-60, Jun 2012.
    [20]A. Dinevan, Y. M. Aung, and A. Al-Jumaily, “Human
    computer interactive system for fast recovery based
    stroke rehabilitation,” HIS, pp. 647-652, Dec 2011.
    [21]P. Mirza-Babaei, M. Kamkarhaghighi, and K.
    Gerling,“Opportunities in game-based stroke
    rehabilitation,” GEM, pp. 1-4, Oct 2014.
    [22]C. H. Lee, Y. H. Chiu, H. Y. Kao, I. T. Chen, I. N.
    Lee, W. H. Ho, and H. Y.Lu, “A Body-Sensed Motor
    Assessment System for Stroke Upper-Limb
    Rehabilitation: A Preliminary Study,” SMC, pp. 3819-
    3824, Oct 2013.
    [23]D. White, K. Burdick, G. Fulk, J. Searleman, and J.
    Carroll, “A virtual reality application for stroke
    patient rehabilitation,” Mechatronics and Automation,
    Vol. 2, pp. 1081-1086, 2005.
    [24]R. Akerkar, “Introduction to artificial
    intelligence,” PHI Learning Pvt. Ltd, 2014.
    [25]S. Miksch, W. Horn, C. Popow, and F. Paky, “Utilizing
    temporal data abstraction for data validation and
    therapy planning for artificially ventilated newborn
    infants,” Artificial intelligence in medicine, Vol.
    8, No. 6, pp. 543-576, 1996.
    [26]C. Ohmann, V. Moustakis, Q. Yang, K. Lang, and Acute
    Abdominal Pain Study Group, “Evaluation of automatic
    knowledge acquisition techniques in the diagnosis of
    acute abdominal pain,” Artificial intelligence in
    medicine, Vol. 8, No. 1, pp. 23-36, 1996.
    [27]Y. Shahar, and M. A. Musen,“Knowledge-based temporal
    abstraction in clinical domains,” Artificial
    intelligence in medicine, Vol. 8, No. 3, pp. 267-298,
    1996.
    [28]R. Bellazzi, C. Siviero, M. Stefanelli, and G.
    Nicolao,“Adaptive controllers for intelligent
    monitoring,” Artificial intelligence in medicine,
    Vol. 7, No. 6, pp. 515-540, 1995.
    [29]R. Davis, B. Buchanan, and E. Shortliffe, “Production
    rules as a representation for a knowledge-based
    consultation program,” Artificial intelligence, Vol.
    8, No. 1, pp. 15-45, 1977.
    [30]C. P. Langlotz, L. M. Fagan, S. W. Tu, B. I. Sikic,
    and E. H. Shortliffe, “A therapy planning
    architecture that combines decision theory and
    artificial intelligence techniques,” Computers and
    Biomedical Research, Vol. 20, No. 3, pp. 279-303,
    1987.
    [31]J. S. Aikins, “Prototypical knowledge for expert
    systems,” Artificial Intelligence, Vol. 20, No. 2,
    pp. 163-210, 1983.
    [32]I. Werry, K. Dautenhahn,B. Ogden, and W. Harwin, “Can
    social interaction skills be taught by a social
    agent? The role of a robotic mediator in autism
    therapy,” Cognitive technology, pp. 57-74, 2001.
    [33]K. Dautenhahn, and I. Werry, “Towards interactive
    robots in autism therapy: Background, motivation and
    challenges,” Pragmatics & Cognition, Vol. 12, No. 1,
    pp. 1-35, 2004.
    [34]J. Fox, M. Beveridge, and D. Glasspool,
    “Understanding intelligent agents: analysis and
    synthesis,” Aicommunications, Vol. 16, No. 3, pp.
    139-152, 2003.
    [35]G. L. Clore, and J. Palmer,“Affective guidance of
    intelligent agents:How emotion controls cognition,”
    Cognitive systems research, Vol. 10, No. 1, pp. 21-
    30, 2009.
    [36]T. Exell, C. Freeman, K. Meadmore, M. Kutlu, E.
    Rogers, A. M. Hughes, and J. Burridge, “Goal
    orientated stroke rehabilitation utilising electrical
    stimulation, iterative learning and microsoft
    Kinect,” ICORR, pp. 1-6, Jun 2013.
    [37]L. Shires, S. Battersby, J. Lewis, D. Brown, N.
    Sherkat, and P. Standen,“Enhancing the tracking
    capabilities of the Microsoft Kinect for stroke
    rehabilitation,” SeGAH, pp. 1-8, May 2013.
    [38]D. Webster, and O. Celik, “Experimental evaluation of
    Microsoft Kinect's accuracy and capture rate for
    stroke rehabilitation applications,” HAPTICS, pp.
    455-460, 2014.
    [39]CODEPROJECT. [Online].
    Available:http://www.codeproject.com/Articles/317974/KinectDepthSmoothing
    [40]J. M. I. Zannatha, A. J. M. Tamayo, Á. D. G. Sánchez,
    J. E. L. Delgado, L. E. R. Cheu, and W. A. S.
    Arévalo, “Development of a system based on 3D vision,
    interactive virtual environments, ergonometric
    signals and a humanoid for stroke rehabilitation,”
    Computer methods and programs in biomedicine, Vol.
    112, No.2, pp. 239-249, 2013.
    [41]R. T. Azuma, “A survey of augmented reality,”
    Presence, Vol. 6, No. 4, pp. 355-385, 1997.
    [42]NVIDIA. [Online]. Available:http://www.nvidia.com.tw/object/io_1270555014738.html
    [43]J. P. Cuthbert, K. Staniszewski, K. Hays, D. Gerber,
    A. Natale, and D. O'Dell, “Virtual reality-based
    therapy for the treatment of balance deficits in
    patients receiving inpatient rehabilitation for
    traumatic brain injury,” Brain injury, Vol. 28, No.
    2, pp. 181-188, 2014.
    [44]H. Sin and G. Lee, “Additional virtual reality
    training using Xbox Kinect in stroke survivors with
    hemiplegia,” American Journal Of Physical Medicine &
    Rehabilitation, Vol. 92, No.10, pp. 871-880, 2013.
    [45]B. Wiederhold and G. Riva, “Balance recovery through
    virtual stepping exercises using Kinect skeleton
    tracking: a follow-up study with chronic stroke
    patients,” Annual Review of Cybertherapy and
    Telemedicine 2012, Vol. 181, pp. 108, 2012.
    [46]K. H. Cho, K. J. Lee, and C. H. Song, “Virtual-
    reality balance training with a video-game system
    improves dynamic balance in chronic stroke patients,”
    The Tohoku journal of experimental medicine, Vol.
    228, No. 1, pp. 69-74, 2012.
    [47]A. Turolla, M. Dam, L. Ventura, P. Tonin, M.
    Agostini, C. Zucconi, and L. Piron, “Virtual reality
    for the rehabilitation of the upper limb motor
    function after stroke: a prospective controlled
    trial,” J Neuroeng Rehabil, Vol. 10, pp. 85, 2013.
    [48]I. Pastor, H. A. Hayes, and S. J. Bamberg, “A
    feasibility study of an upper limb rehabilitation
    system using kinect and computergames,” EMBC, pp.
    1286-1289, Aug 2012.
    [49]A. Panarese, R. Colombo, I. Sterpi, F. Pisano, and S.
    Micera, “Tracking motor improvement at the subtask
    level during robot-aided neurorehabilitation of
    stroke patients,” Neurorehabilitation and neural
    repair, Vol. 26, No. 7, pp. 822-833, 2012.
    [50]Q. Ding, I. H. Stevenson, N. Wang, W. Li, Y. Sun, Q.
    Wang, and K. Wei, “Motion games improve balance
    control in stroke survivors: A preliminary study
    based on the principle of constraint-induced movement
    therapy,” Displays, Vol. 34, No. 2, pp. 125-131,
    2013.
    [51]馮恒諺,「虛擬實境中風復健系統之上肢運動成效評估與運動分
    析」,國立中央大學資工系,碩士論文,2014。
    [52]L. Paul, H. Debbie, B. Jennifer, L. Hervé,“A haptic-
    robotic platform for upper-limb reaching stroke
    therapy: Preliminary design and evaluation results,”
    J Neuroeng Rehabil, Vol. 5, No. 15, 2008.
    [53]National Center for Biotechnology Information
    [Online]. Available:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409358/
    [54]S. Hesse, A. Waldner, and C. Tomelleri, “Innovative
    gait robot for the repetitive practice of floor
    walking and stair climbing up and down in stroke
    patients,” Journal of Neuro Engineering and
    Rehabilitation, Vol. 7, No. 30, 2010.
    [55]Journal of NeuroEngineering and Rehabilitation.
    [Online].
    Available:http://www.jneuroengrehab.com/content/7/1/30
    [56]B. Dorey, D. Reid, and T. Chiu, “ Stroke survivor’s
    experiences of computer use at home,” Technology and
    Disability, Vol. 19, No. 4, pp. 179-188, 2007.
    [57]L. Rosenstein, A. L. Ridgel, A. Thota, B. Samame, and
    J. L. Alberts, “Effects of combined robotic therapy
    and repetitive-task practice on upper-extremity
    function in a patient with chronic stroke,” American
    Journal of Occupational Therapy, Vol. 62, pp. 28-35,
    2008.
    [58]H. C. Huang, C. H. Yeh, C. M. Chen, Y. S. Lin, and K.
    C. Chung, “Sliding and pressure evaluation on
    conventional and V-shaped seats of reclining
    wheelchairs for stroke patients with flaccid
    hemiplegia: a crossover trial,” Journal of
    NeuroEngineering and Rehabilitation, Vol. 8, No. 40,
    2011.
    [59]WheelChair.com.hk. [Online].
    Available:http://www.wheelchair.com.hk/reclining-back-wheelchairs
    [60]P. Bagley, M. Hudson, A. Foster, J. Smith, and J.
    Young, “A randomized trial evaluation of the Oswestry
    Standing Frame for patients after stroke,” Clinical
    Rehabilitation, Vol. 19, pp. 354-364, 2005.
    [61]H. A. Isma'eel, G. E. Sakr, M. M. Almedawar, J.
    Fathallah , T. Garabedian, S. B. Eddine, L.
    Nasreddine, and I. H. Elhajj, “Artificial neural
    network modeling using clinical and knowledge
    independent variables predicts salt intake reduction
    behavior,” Cardiovasc Diagn Ther, Vol. 5, No. 3, pp.
    219-228, Jun 2015.
    [62]H. Karamanli, T. Yalcinoz, M. A. Yalcinoz, and T.
    Yalcinoz, “A prediction model based on artificial
    neural networks for the diagnosis of obstructive
    sleep apnea,” Sleep Breath, 2015.
    [63]S. C. Hu, “Texture Analysis for Aided Diagnosis of
    Hemorrhage Transformation of Acute Middle Ischemic
    Stroke in CT Images,” Department of Bio-Medical
    Engineering, Mar 2012.
    [64]楊世瑩,「PASW SPSS統計分析即學即用」,碁峯資訊股份有限公
    司,Jun 2011。
    [65]C. Spearman,“The proof and measurement of association
    between two things,” The American journal of
    psychology, Vol. 15, pp.72-101, 1904.
    [66]蘇木春與張孝德,「機器學習:類神經網路、模糊系統以及基因演算
    法則」,全華圖書股份有限公司,2012。
    [67]P. J. Rousseeuw, “Silhouettes: a graphical aid to the
    interpretation and validation of cluster analysis,”
    Journal of computational and applied mathematics,
    Vol. 20, pp. 53-65, 1987.
    [68]CHRIS MCCORMICK. [Online].
    Available:https://chrisjmccormick.wordpress.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/
    [69]R. E. Fan, P. H. Chen, and C. J. Lin, “Working Set
    Selection Using Second Order Information for
    Training Support Vector Machines,” J. Mach. Learn.
    Res., Vol. 6, pp. 1889-1918, 2005.

    QR CODE
    :::