| 研究生: |
黃筱琦 Hsiao-chi Huang |
|---|---|
| 論文名稱: |
無線通訊系統之測距演算法設計 Ranging algorithm designs for wireless systems |
| 指導教授: |
陳永芳
Yung-fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 正交分頻多工接進 、測距 、調頻連續波雷達 |
| 外文關鍵詞: | OFDMA, Ranging, FMCW |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線通訊系統上由於各使用者與基地台的位置不相同,我們需得知相關的測距資訊,來達到系統的要求。本論文分成兩系統來討論, 一個為雷達系統,另一個為初始測距的OFDMA系統。
調頻連續波(FMCW)雷達利用在時間上改變發射訊號的頻率,並測量接受信號與發射訊號頻率間的差值來測定目標距離與速度等資訊。本論文主要研究如何設計調頻連續波訊號波形,以有效抗干擾並能測得目標訊號的距離與速度資訊。
使用者與基地台建立通訊需要得知關於同步的參數,利用正交分多工接進系統的初始測距在基地台上可接收到關於時間與頻率的訊號,並利用此訊號搭配ESPRIT 演算法進一步求得關於測距的同步參數。本論文運用其他類似ESPRIT的演算法,並同時偵測出頻率位移和時間延遲,而目前的演算法[24]需利用不同的訊號處理再分別求出頻率位移和時間延遲。
Because the position of every user is varied from the base station, we may need to know the related ranging information which may be required for the system. The thesis is divided into two parts. The first part is the algorithm designed for radar systems. The second part is the initial ranging algorithm design for OFDMA systems.
FMCW radar utilizes the technology by changing frequency in time from the transmitter. By way of the time difference and Doppler frequency between the transmitted and received signals, we can obtain the information about distance and velocity. The purpose of this part in the thesis is to design an FMCW signal which can resist to interferences while retain the capability of detecting the distance and velocity.
An initial ranging estimation scheme for OFDMA systems is proposed as users intend to establish communication link with the base station (BS) by utilizing spreading in both the time and the frequency domains. The synchronization parameters can be estimated by using the ESPRIT algorithm. We will use a similar ESPRIT algorithm to estimate timing delay and frequency offset simultaneously. In [15], the estimation of the timing delay and the frequency offset requires two sets of signals for processing separately to achieve to this task.
[1]M. I. Skolnik, Introduction to RADAR System, McGraw-Hill, 2nd ed., 1981.
[2]A. G. Stove, “Linear FMCW radar techniques,” in Proc. Inst. Electr. Eng. F – Radar Signal Process., vol.139, no.5, pp.343-350, Oct. 1992.
[3]G. Zhang, M. Guo and Y. Bao, “Silence tracking radar,” in Proc. CIE Int. Conf. on Radar, pp. 125-128, Oct. 2001
[4]R. Zhang, J. Yang and J. Xiong, "Novel method of parameter estimation for moving target in millimeter-wave short-range linear FMCW radar," in Proc. ICSP Int. Conf. on Signal Processing, Aug. 2004
[5]S. O. Piper, “Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep,” in Proc. IEEE Int. Radar Conf., pp. 563-567, May, 1995.
[6]J. Krinock, M. Singh, M. Paff, A. Lonkar, L. Fung, and C.-C. Lee, “Comments on OFDMA ranging scheme described in IEEE 802.16ab-01/01r1,” IEEE 802.16 Broadband Wireless Access Working Group, Tech. Rep., July 2001.
[7]H. A. Mahmoud, H. Arslan, and M. K. Ozdemir, “Initial ranging for WiMAX (802.16e) OFDMA,” in Proc. IEEE Military Commun. Conf., pp. 1–7, Oct. 2006.
[8]K. N. Kim, S. C. Kim, J. H. Kim and S. J. Cho, “The scheme to improve the performance of initial ranging symbol detection with common ranging code for OFDMA systems,” in Proc. 8th Int. Conf. Advanced Commun. Technol. (ICACT), vol.1, pp. 183–188, Feb. 2006.
[9]J. Zeng, H. Minn, “A novel OFDMA ranging method exploiting multiuser diversity,” in Proc. IEEE Global Telecomm. Conf., vol.1, pp. 1498–1502., Nov. 2007.
[10]X. Fu, Y. Li, and H. Minn, “A new ranging method for OFDMA systems,” IEEE Trans. Wireless Commun., vol.6, no.2, pp.659–669, Feb. 2007.
[11]D. S. Radovic and M. M. Eric, “Performance of subspace based multi-user CFO estimation for interleaved OFDMA uplink,” in Proc. Int. Conf. on Computer as a tool, pp.1602-1605, vol.2, Nov. 2005.
[12]Z. Cao, U. Tureli, and Y. D. Yao, “Deterministic multiuser carrier frequency offset estimation for the interleaved OFDMA uplink,” IEEE Trans. Commun., vol.52, no.9, pp.1585–1594, Sept. 2004.
[13]J. Lee, S. Lee, K. J. Bang, S. Cha and D. Hong, “Carrier frequency offset estimation using ESPRIT for interleaved OFDMA uplink systems,” IEEE Trans. Vehicular. Technol., vol.56, no.5, pp.3227–3231, Sept. 2007.
[14]M. Morelli, L. Sanguinetti, and H. V. Poor, “A robust ranging scheme for OFDMA-based networks,” IEEE Trans. Commun., vol.57, no.8, pp.2441–2452, Aug. 2009.
[15]L. Sanguinetti, M. Morelli and H. V Poor, “An ESPRIT-Based Approach for Initial Ranging in OFDMA Systems”, IEEE Trans. Commun., vol.57, Nov 2009.
[16]A. Meta, P. Hoogeboom and L. P. Ligthart, “Signal Processing for FMCW SAR” IEEE Trans. on Geoscience and Remote Sensing, vol. 45, no. 11, Nov. 2007.
[17]T. D. Bhatt, E. G. Rajan and P. V. D. Somasekhar Rao, ” Design of frequency-coded waveforms for target detection ,” Radar, Sonar & Navigation, IET. vol2, no. 5, pp.388-394, Oct. 2008.
[18]F. Liu, J. Wang and G. Yu, “An OTST-ESPRIT Algorithm for Joint DOA-Delay Estimation”, IEEE ISCIT, vol.2, pp.734-738, Oct. 2004.
[19]S. Scheiblhofer, S. Schuster and A. Stelzer, “Signal Model and Linearization for Nonlinear Chirps in FMCW Radar SAW-ID Tag Request,” IEEE Trans. on Microwave Theory and Technol, vol.54, no.4, pp.1477-1483, Apr. 2006.
[20]A. Meta, P. Hoogeboom, and L. P. Ligthart, “Signal Processing for FMCW SAR,” IEEE Trans. on Geoscience and Remote Sensing, vol. 45, no. 11, Part 1, pp.3519-3532, Nov. 2007.
[21]Auslander, L.; Tolimieri, R ,"Characterizing the radar ambiguity functions", IEEE Trans. on Information Theory, vol.30, no. 6, pp.832-836, Nov. 1984.
[22]C. N. Oligboh, M. SC. and M. H. Ackroyd, "Linear frequency coded sequence (L.F.C.S.)"Electronic Circuits and Systems, IEE Proceedings G, vol.127, no. 4, pp.191-198, Aug. 1980.
[23]A. Grzywacz, "Experimental Investigations of Digital Signal Processing Techniques in an FMCW Radar for Naval Application in an FMCW Radar for Naval Application," Int. Conf. on Microwaves, Radar and Wireless Commun., vol.3, pp.757-763, Aug. 2002
[24]Nadav Levanon ; Eli Mozeson , Radar signals ,Hoboken, NJ : J. Wiley, 2004.
[25]IEEE LAN/MAN Standard Committee, “IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems, Amendment 2 and Corrigendum 1”, IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor1-2005, 2005.
[26]Y. F. Chen, “Analysis of ESPRIT-Based Algorithms for Blind Frequency Offset Estimation on MC-CDMA Downlink”, IEICE Trans. Commun., vol. E89-B, no.3, Mar. 2006.
[27]Y. F. Chen and M. D. Zoltowski, “Joint angle and delay estimation for DS-CDMA with application to reduced dimension space-time RAKE receivers, ”, IEEE ICASSP, vol. 5, pp.2933 – 2936, 1999.
[28]Y. Zhou, Z. Zhang and X. Zhou, “OFDMA Initial Ranging for IEEE 802.16e Based on Time-domain and Frequency-domain Approaches”, IEEE ICCT, pp. 1-5, Nov. 2006.
[29]M. Haardt, M. D. Zoltowski, C. P. Mathews and J. A. Nossek, “2D unitary ESPRIT for efficient 2D parameter estimation. ”, IEEE ICASSP, vol.3, pp.2096 – 2099, 1995.
[30]F. Ji, J Liang and F. J Chen, “ESPRIT algorithm for joint delay and 2-dimensional DOA estimation of multipath parameters”, IEEE MAPE, pp.1093-1094, 2007.
[31]M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to Obtain Increased Estimation Accuracy with a Reduced Computational Burden”, IEEE Trans. Signal Processing, vol.43, no. 5, May 1995.