跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭安棣
An-li Cheng
論文名稱: 分子電晶體之穿隧電流與熱電效應
Tunneling current and thermoelectric effects in a single molecular transistor with strong electron phonon interactions
指導教授: 郭明庭
David. M. T. Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 47
中文關鍵詞: 分子電晶體熱電效應
外文關鍵詞: thermoelectric effects, molecular transistor
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用安德生模型在電子與聲子交互作用力下,描述單分子電晶體的結構,並理論性地探討其穿隧電流、電導、熱導、熱電係數以及熱電優值。由於很強的電子與聲子交互作用力,在低溫區域可以很清楚地看到穿隧電流以及熱電係數會藉由聲子協助穿隧產生新的峰值。然而當溫度增加時,聲子協助穿隧的效應逐漸變得不明顯。此外在不考慮電子與聲子交互作用力時,庫倫阻斷區域的熱電優值可以得到一個令人期待的值,一旦考慮電子與聲子交互作用力,熱電優值則會被抑制的很嚴重,以至於很難達到Carnot效應,這歸咎於多重聲子輔助穿隧造成熱導值的提升。我們可以藉由量測熱電係數來觀察高階聲子協助穿隧的過程。


    This thesis theoretically studies the tunneling current, electrical conductance, thermal power, electron thermal conductance and figure of merit of a single molecular quantum dot by using the Anderson model with strong coupling between molecular vibration modes and localized electron [or “electron-phonon interactions ”(EPIs)]. Due to strong EPIs, the phonon side bands of tunneling current and thermal power are observed at low temperature, but readily washed out with increasing temperature. In the absence of EPIs, the figure of merit (ZT) of molecular QD junctions exhibits an impressive value in the Coulomb blockade regime .The seriously reduction of ZT is observed in the presence of strong EPIs. The suppression of ZT is mainly attributed to the considerable enhancement of electron thermal conductance due to the involve of multiple phonon assisted tunneling processes. We also find that Carnot efficiency vanishes in the strong EPIs. We can resolve the high-order phonon assisted tunneling processes by using measurement of thermal power.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 導論 1 1-1電晶體簡介與發展近況 1 1-1-1電晶體簡介 1 1-1-2 分子電晶體簡介 1 1-2熱電材料 3 1-2-1 熱電材料簡介 3 1-2-2 熱電優值ZT 5 1-3 論文架構 6 第二章分子電晶體與熱電元件之操作原理 8 2-1 系統模型 8 2-2 穿隧電流與熱流方程式 10 2-3 電子佔據率與格林函數 11 2-4 線性操作的熱電元件與參數 14 第三章 分子電晶體的穿隧電流 16 3-1 定性分析 16 3-2系統偏壓在不同EPIs對穿隧電流影響 18 3-2-1系統偏壓在不同溫度對穿隧電流影響 21 3-3閘極偏壓在不同EPIs對穿隧電流影響 24 3-4 小結 26 第四章 熱電效應的模擬 27 4-1 前言 27 4-2 內階庫倫交互作用力對ZT的影響 28 4-3 電子與聲子交互作用力對ZT的影響 30 4-4 量子點能階偏移對ZT的影響 33 4-5 穿隧率對ZT的影響 35 4-6 調控閘極電位對ZT的影響 38 第五章 結論 42 參考文獻 43

    [1.1] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, ” Large on-off ratios and negative differential resistance in a molecular electronic device” ,Science 286, 1550 (1999).
    [1.2] J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. V. Löhneysen,“ Driving current through single organic molecules”, Loheysen, Phys. Rev. Lett. 88, 176804 (2002).
    [1.3] S.Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm “Single-electron transistor of a single organic molecule with access to several redox states”,Nature 425, 68 (2003).
    [1.4] A. Mitra, I. Aleiner, and A. J. Millis,“Phonon effects in molecular transistors: Quantal and classical treatment”, Phys. Rev. B 69, 245302 (2004).
    [1.5] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisators and P. L. McEuen , “Nanomechanical oscillations in a single- transistor”, Nature. 407, 57 (2000).
    [1.6] N. B. Zhitenev, H. Meng, and Z. Bao, “ Conductance of small molecular junctions” Phys. Rev. Lett. 88, 226801 (2002).
    [1.7] A. J. Minnich M. S. Dresselhaus, Z. F. Ren and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”,Energy Environ. Sci. 2 , 466 (2009).
    [1.8] A. Majumdar ,“Thermoelectricity in semiconductor nanostructures”, Science 303, 777 (2004).
    [1.9] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, “Recent developments in thermoelectric materials”, International Materials Reviews, 48, 45 (2003).
    [1.10] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597 (2001).
    [1. 11] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Health,“Silicon nanowires as efficient thermoelectric materials”, Nature, 451, 168 (2008).
    [1.12] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge ,“Quantum dot superlattice thermoelectric materials and devices ”, Science 297, 2229 (2002).
    [1.13] Y. M. Lin and M. S. Dresselhaus ,“Thermoelectric properties of superlattice nanowires ”, Phys. Rev. B, 68, 075304 (2003).
    [1.14] P. Murphy, S. Mukerjee, and J. Moore,“Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B 78, 161406 (2008).
    [1.15] S. Sapmaz, P. Jarillo-Herrero, ya. M. Blanter, C. Dekker, H. S. J. van der Zant ,“Tunneling in suspended carbon nanotubes assisted by longitudinal phonons ”,Phys. Rev. Lett. 96, 026801 (2006).
    [1.16] A. P. Jauho, N. S. Wingreen and Y. Meir ,“ Time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator”, Phys. Rev. B, 50, 5528 (1994).
    [1.17] D. M. T. Kuo and Y. C. Chang,“ Tunneling current through a quantum dot with strong electron-phonon interaction ”, Phys. Rev. B, 66, 085311 (2002).
    [1.18] M. Galperin, A. Nitzan and M. A. Ratner,“ Heat conduction in molecular transport junctions ”,Phys. Rev. B, 75, 155312 (2007).
    [1.19] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang,J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song,M. S. Dresselhaus, G. Chen and Z. Ren “ Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy”, Appl. Phys. Lett. 93, 193121 (2008).
    [1.20] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould,D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren“ Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys ”, Nano Lett. 8, 4670 (2008).
    [1.21] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, “ High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys ”, Science, 320, 634 (2008).
    [2.1] D. M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
    [2.2] N. B. Zhitenev, H. Meng, and Z. Bao, ” Conductance of Small Molecular Junctions” Phys. Rev. Lett. 88, 226801 (2002).
    [2.3] D. M. T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007).
    [2.4] D. M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000).
    [2.5] D. M. T. Kuo and Y. C. Chang, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B, 77, 245412 (2000).
    [2.6] G. D. Mahan, Many Particle Physics, 3rd ed. (Plenum, New York, 2000 ).
    [2.7] D. M. T. Kuo and Y. C. Chang , “Tunneling current through a quantum dot with strong electron-phonon interaction”, Phys. Rev. B,66,085311 (2002).
    [2.8] J.Liu, J.Song, Q. F. Song, and X. C. Xie, “Electric-current-induced heat generation in a strongly interacting quantum dot in the Coulomb blockade regime”, Phys. Rev. B, 79, 161309 (2009).
    [2.9] K. Flensberg, “Tunneling broadening of vibrational sidebands in molecular transistors”, Phys. Rev. B , 68, 205323 (2003).
    [2.10] B. Dong and X. L. lei, “Effect of the Kondo correlation on the thermopower in a quantum dot ”, J. Phys. Cindens. Matters 14, 11747 (2002).
    [2.11] D. Segal, “Single Mode Heat Rectifier: Controlling Energy Flow Between Electronic Conductors”, Phys. Rev. Lett. 100, 105901, (2009).
    [3.1] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisators and P. L. McEuen , “Nanomechanical oscillations in a single- transistor”, Nature. 407, 57 (2000).
    [4.1] D. M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling
    current through a single quantum dot”, Physica E 27, 355 (2005).
    [4.2] D. M. T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
    [4.3] G. Mahan, B. Sales and J. Sharp, “Thermoelectric materials: New approaches to an old problem”, Physics Today 50, 42 (1997).
    [4.4] D. M. T. Kuo ,“Thermoelectric properties of multiple quantum dots junction system”, Jap. J. Appl. Phys. 48, 125005 (2009).
    [4.5] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B. 78, 161406 (2008).

    QR CODE
    :::