跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周漢源
Han-Yuan Zhao
論文名稱: 數值模擬不同幾何型態的噴流特性
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 109
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 理參數(如雷諾數、普朗特數… … .等)的影響,從不同幾何形狀的
    噴嘴中噴入一渠道中,探討其對衝擊面上的熱傳影響。首先藉著模擬
    狹縫形噴嘴噴流噴入一頂部恆溫,四周絕熱且有對稱特性的渠道內,
    來探討雷諾數(Re)、普朗特數(Pr)、噴嘴到衝擊面距離(H*)與不
    同形態的入口速度剖面… … .等物理參數與幾何形狀上的差異,與文
    獻做比較與討論,來了解噴流的流線結構與熱傳特性等性質。
    接著模擬圓管形噴嘴噴流在一軸對稱且頂部恆溫,四周絕熱的渠
    道中,與狹縫形噴嘴噴流比較彼此間的熱傳特性差異,其中圓管形噴
    流適合於小區域的取熱,而狹縫形噴嘴噴流適合於大面積的取熱。除
    此之外,圓管形噴嘴噴流的模擬還針對在有或無限制面渠道內,流體
    在不同雷諾數與高度(H*)下,流線與熱傳表現,當低雷諾數(Re£600)
    時限制面對熱傳所形成的影響極微;600<Re<1200 時則受限制面所影
    響的系統熱傳因受次滯留循環區影響而較不佳;當Re>1200 時又因
    次滯留循環區強度弱而兩者間熱傳表現無異。對於因均一形入口速度
    剖面帶來的剪應力所造成局部奈塞爾數(Nu)最大值偏移現象,探
    討其與高度(H*)間的關係,高度越大時則Nu 最大值會向內漸漸移
    動。另外因HEM長晶法中,衝擊面直徑尺寸對長晶溫度梯度形成有
    重要影響,故對此我們模擬衝擊面直徑對熱傳的影響,當衝擊面直徑
    (Di)越小時,所得平均奈塞爾數越佳。
    最後進入研究主體,在圓管形噴嘴噴流中討論水渠道的加入,形
    成一新型的熱交換器系統,藉著水來幫助氣體取熱,減少氣體的耗
    費。針對此系統模擬討論在不同氣體流速與水流速的關係下,對取熱
    II
    方式產生的改善,以得到控制HEM 長晶時所需之溫度生長梯度。水
    的加入對取熱有一定的改善,只是水增加對增加取熱量的效果不是很
    明顯,因此適當的增加噴氣量會得到更佳的取熱效果。


    摘要.................................................................................................... I 致謝..................................................................................................III 符號說明........................................................................................ IV 目錄................................................................................................. VI 圖表目錄........................................................................................ IX 第一章 緒論..................................................................................1 1-1 前言.......................................................................................1 1-2 文獻回顧...............................................................................1 1-3 研究目的...............................................................................3 第二章 狹縫形噴嘴噴流的特性(直角座標系)..................5 2-1 物理模式...............................................................................5 2-2 統御方程式與邊界條件.........................................................5 2-2.1 統御方程式.................................................................................5 2-2.2 邊界條件......................................................................................6 2-3 無因次化後的統御方程式與邊界條件..................................7 2-3.1 無因次量......................................................................................7 2-3.2 無因次化統御方程式與邊界條件..........................................8 2-4 研究方法.............................................................................10 2-4.1 FIDAP 簡介....................................................................................... 10 2-4.1.1 元素型式的設定............................................................................10 2-4.1.2 FIDAP 的前處理與後處理............................................................. 11 2-4.1.3 FIDAP 可以處理的問題.................................................................12 VII 2-4.1.4 FIDAP 解題方式與討論.................................................................12 2-4.2 解題步驟........................................................................................... 15 2-4.3 計算奈塞爾常數.............................................................................. 17 2-5 結果與討論.........................................................................18 2-5.1 程式結果驗證................................................................................... 19 2-5.2 流場與熱流場討論.......................................................................... 21 2-5.3 均一形速度剖面噴流平均奈塞爾數的討論............................... 24 第三章 圓管形噴嘴噴流的特性 (圓柱座標系,未加水冷卻)… … … … … … … … … .26 3-1 物理模式.............................................................................26 3-2 統御方程式與邊界條件.......................................................26 3-2.1 統御方程式....................................................................................... 26 3-2.2 邊界條件........................................................................................... 27 3-3 無因次化後統御方程式與邊界條件....................................29 3-3.1 無因次量........................................................................................... 29 3-3.2 無因次化統御方程式與邊界條件................................................ 29 3-4 計算奈塞爾常數..................................................................31 3-5 結果與討論.........................................................................32 3-5.1 圓管形噴嘴噴流與狹縫形噴嘴噴流的比較............................... 33 3-5.2 程式結果驗證................................................................................... 33 3-5.3 流場與熱流場討論.......................................................................... 34 3-5.4 限制面與噴嘴高度影響................................................................. 36 3-5.5 均一速度剖面噴流最大局部奈塞爾數偏移現象...................... 37 3-5.6 衝擊面直徑(Di)的影響............................................................. 38 第四章 加水冷卻的圓管形噴嘴噴流特性探討....................39 4-1 物理模式.............................................................................39 4-2 統御方程式與邊界條件.......................................................39 4-2.1 統御方程式....................................................................................... 39 4-2.2 邊界條件........................................................................................... 40 4-3 無因次化後統御方程式與邊界條件....................................43 4-3.1 無因次量........................................................................................... 43 VIII 4-3.2 無因次化統御方程式與邊界條件................................................ 43 4-4 結果與討論.........................................................................47 4-4.1 純吹氣與通水比較.......................................................................... 47 4-4.2 氣體不變而水流增加情況............................................................. 48 4-4.3 氣體增加而水流不變情況............................................................. 48 4-4.4 高度的影響....................................................................................... 49 4-4.5 純吹氣與通水彼此間Nuav 的關係................................................49 第五章 結論................................................................................50 參考文獻......................................................................................107

    1. D. Vienchnicki, F. Schmid, “ Growth of large monicrystal of Al2O3 by
    a gradient furnace technique ”, J. Crystal Growth, Vol.11, pp.345-347,
    1971
    2. E. M. Sparrow, T. C. Wong, “ Impingement transfer coefficients due to
    initially laminar slot jets ”, Int. J. Heat Mass Transfer, Vol.18,
    pp.597-605, 1975
    3. E. M. Sparrow, L. Lee, “ Analysis of flow field and impingement
    heat/mass transfer due to a nonuniform slot jet ”, J. Heat Transfer,
    TRANS. ASME, pp.191-197, 1975
    4. A. R. P. Van Heiningen, A. S. Mujumdar, W. J. M. Douglas,
    “ Numerical prediction of flow field and impingement heat transfer
    cause by a laminar slot jet ”, J. Heat Transfer, TRANS. ASME,
    pp.654-658, 1976
    5. D. M. Schafer, F. P. Incropera, S. Ramadhyani, “ Planar liquid Jet
    impingement cooling of multiple discrete heat sources ”, J. Electron
    Packaging, TRANS. ASME, Vol.113, p.359-366, 1991
    6. D. M. Schafer, S. Ramadhyani, F. P. Incropera, “ Numerical simulation
    of laminar convection heat transfer from an in-line array of discrete
    sources to a confined rectangular jet ”, Numerical Heat Transfer, Part A,
    Vol.22, pp.121-141, 1992
    7. S. A. Sanea, “ A numerical study of the flow and heat-transfer
    characteristics of an impinging laminar slot-jet including crossflow
    effects ”, Int. J. Heat/Mass Transfer, Vol.35, pp.2501-2513, 1992
    8. Y. J. Chou, Y. H. Hung, “ Impingement cooling of an isothermally
    heated surface with a confined slot jet ”, J. Heat Transfer, TRANS.
    ASME, Vol.116, pp.479-482, 1994
    108
    9. Z. H. Lin, Y. J. Chou, Y. H. Hung, “ Heat transfer behaviors of a
    confined slot jet impingement ”, Int. J. Heat/Mass Transfer, Vol.40,
    pp.1095-1107, 1997
    10. M. T. Scholtz, O. Transs, “ Mass transfer in a nonuniform impinging
    jet ”, AIChE Journal, Vol.16, pp.82-96, 1970
    11. N. R. Saad, W. J. M. Douglas, A. S. Mujumdar, “ Prediction of heat
    transfer under an axisymmetric laminar impinging jet ”, Ind. Eng.
    Chem., Fundam., Vol.16, pp.148-154, 1977
    12. M. D. Deshpande, R. N. Vaishnav, “ Submerged laminar jet
    impingement on a plane ” , J. Fluid Mech., Vol.144, pp.213-236, 1982
    13. D. L. Besserman, S. Ramadhyani, F. P. Incropera, “ Numerical
    simulation of laminar flow and heat transfer for liquid impingement
    cooling of a circular heat source with annular collection of the spent
    fluid ”, Numerical Heat Transfer, Part A, Vol.20, pp.263-278, 1991
    14. X. Liu, J. H. V. Lienhard, J. S. Lombara, “ Convective heat transfer
    by impingement of circular liquid jet ”, J. Heat Transfer, TRAS.
    ASME, Vol.133, pp.571-582, 1991
    15. X. Liu, J. H. V. Lienhard, “ Liquid jet impingement heat transfer on a
    uniform flux surface ”, Heat Transfer Phenomena in Radiation,
    Combustion, and Files, ASME HTD., Vol.6, pp.523-530, 1989
    16. E. Baydar, “ Confined impinging air jet at low Reynolds numbers ”,
    Experimental Thermal and Fluid Science, Vol.19, pp.27-33, 1999
    17. F. Potthast, H. Laschefski, N. K. Mitra, G. Biswas, “ Numerical
    investigation of flow structure and mixed convection heat transfer of
    impinging radial and axial jets ”, Numerical Heat Transfer, Part A,
    Vol.26, pp.123-140, 1994
    18. F. Schmid, “ Crystal growth ”, U. S. Pat. 3, 898, 051, Aug 5, 1975
    19. P. M. Gerhart, R. J. Gross, “ Fundamentals of fluid mechanics ”,
    Addison-Wesley Pub. Co, 1992
    109
    20. F. P. Incropera, D. P. Dewitt, “ Fundamentals of heat and mass
    transfer ”, Wiley, New York, 4th, 1996
    21. R.W. Hornbeck, “ Numerical Methods ”, Quantum Pub., New York,
    1982

    QR CODE
    :::