| 研究生: |
周漢源 Han-Yuan Zhao |
|---|---|
| 論文名稱: |
數值模擬不同幾何型態的噴流特性 |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
理參數(如雷諾數、普朗特數… … .等)的影響,從不同幾何形狀的
噴嘴中噴入一渠道中,探討其對衝擊面上的熱傳影響。首先藉著模擬
狹縫形噴嘴噴流噴入一頂部恆溫,四周絕熱且有對稱特性的渠道內,
來探討雷諾數(Re)、普朗特數(Pr)、噴嘴到衝擊面距離(H*)與不
同形態的入口速度剖面… … .等物理參數與幾何形狀上的差異,與文
獻做比較與討論,來了解噴流的流線結構與熱傳特性等性質。
接著模擬圓管形噴嘴噴流在一軸對稱且頂部恆溫,四周絕熱的渠
道中,與狹縫形噴嘴噴流比較彼此間的熱傳特性差異,其中圓管形噴
流適合於小區域的取熱,而狹縫形噴嘴噴流適合於大面積的取熱。除
此之外,圓管形噴嘴噴流的模擬還針對在有或無限制面渠道內,流體
在不同雷諾數與高度(H*)下,流線與熱傳表現,當低雷諾數(Re£600)
時限制面對熱傳所形成的影響極微;600<Re<1200 時則受限制面所影
響的系統熱傳因受次滯留循環區影響而較不佳;當Re>1200 時又因
次滯留循環區強度弱而兩者間熱傳表現無異。對於因均一形入口速度
剖面帶來的剪應力所造成局部奈塞爾數(Nu)最大值偏移現象,探
討其與高度(H*)間的關係,高度越大時則Nu 最大值會向內漸漸移
動。另外因HEM長晶法中,衝擊面直徑尺寸對長晶溫度梯度形成有
重要影響,故對此我們模擬衝擊面直徑對熱傳的影響,當衝擊面直徑
(Di)越小時,所得平均奈塞爾數越佳。
最後進入研究主體,在圓管形噴嘴噴流中討論水渠道的加入,形
成一新型的熱交換器系統,藉著水來幫助氣體取熱,減少氣體的耗
費。針對此系統模擬討論在不同氣體流速與水流速的關係下,對取熱
II
方式產生的改善,以得到控制HEM 長晶時所需之溫度生長梯度。水
的加入對取熱有一定的改善,只是水增加對增加取熱量的效果不是很
明顯,因此適當的增加噴氣量會得到更佳的取熱效果。
1. D. Vienchnicki, F. Schmid, “ Growth of large monicrystal of Al2O3 by
a gradient furnace technique ”, J. Crystal Growth, Vol.11, pp.345-347,
1971
2. E. M. Sparrow, T. C. Wong, “ Impingement transfer coefficients due to
initially laminar slot jets ”, Int. J. Heat Mass Transfer, Vol.18,
pp.597-605, 1975
3. E. M. Sparrow, L. Lee, “ Analysis of flow field and impingement
heat/mass transfer due to a nonuniform slot jet ”, J. Heat Transfer,
TRANS. ASME, pp.191-197, 1975
4. A. R. P. Van Heiningen, A. S. Mujumdar, W. J. M. Douglas,
“ Numerical prediction of flow field and impingement heat transfer
cause by a laminar slot jet ”, J. Heat Transfer, TRANS. ASME,
pp.654-658, 1976
5. D. M. Schafer, F. P. Incropera, S. Ramadhyani, “ Planar liquid Jet
impingement cooling of multiple discrete heat sources ”, J. Electron
Packaging, TRANS. ASME, Vol.113, p.359-366, 1991
6. D. M. Schafer, S. Ramadhyani, F. P. Incropera, “ Numerical simulation
of laminar convection heat transfer from an in-line array of discrete
sources to a confined rectangular jet ”, Numerical Heat Transfer, Part A,
Vol.22, pp.121-141, 1992
7. S. A. Sanea, “ A numerical study of the flow and heat-transfer
characteristics of an impinging laminar slot-jet including crossflow
effects ”, Int. J. Heat/Mass Transfer, Vol.35, pp.2501-2513, 1992
8. Y. J. Chou, Y. H. Hung, “ Impingement cooling of an isothermally
heated surface with a confined slot jet ”, J. Heat Transfer, TRANS.
ASME, Vol.116, pp.479-482, 1994
108
9. Z. H. Lin, Y. J. Chou, Y. H. Hung, “ Heat transfer behaviors of a
confined slot jet impingement ”, Int. J. Heat/Mass Transfer, Vol.40,
pp.1095-1107, 1997
10. M. T. Scholtz, O. Transs, “ Mass transfer in a nonuniform impinging
jet ”, AIChE Journal, Vol.16, pp.82-96, 1970
11. N. R. Saad, W. J. M. Douglas, A. S. Mujumdar, “ Prediction of heat
transfer under an axisymmetric laminar impinging jet ”, Ind. Eng.
Chem., Fundam., Vol.16, pp.148-154, 1977
12. M. D. Deshpande, R. N. Vaishnav, “ Submerged laminar jet
impingement on a plane ” , J. Fluid Mech., Vol.144, pp.213-236, 1982
13. D. L. Besserman, S. Ramadhyani, F. P. Incropera, “ Numerical
simulation of laminar flow and heat transfer for liquid impingement
cooling of a circular heat source with annular collection of the spent
fluid ”, Numerical Heat Transfer, Part A, Vol.20, pp.263-278, 1991
14. X. Liu, J. H. V. Lienhard, J. S. Lombara, “ Convective heat transfer
by impingement of circular liquid jet ”, J. Heat Transfer, TRAS.
ASME, Vol.133, pp.571-582, 1991
15. X. Liu, J. H. V. Lienhard, “ Liquid jet impingement heat transfer on a
uniform flux surface ”, Heat Transfer Phenomena in Radiation,
Combustion, and Files, ASME HTD., Vol.6, pp.523-530, 1989
16. E. Baydar, “ Confined impinging air jet at low Reynolds numbers ”,
Experimental Thermal and Fluid Science, Vol.19, pp.27-33, 1999
17. F. Potthast, H. Laschefski, N. K. Mitra, G. Biswas, “ Numerical
investigation of flow structure and mixed convection heat transfer of
impinging radial and axial jets ”, Numerical Heat Transfer, Part A,
Vol.26, pp.123-140, 1994
18. F. Schmid, “ Crystal growth ”, U. S. Pat. 3, 898, 051, Aug 5, 1975
19. P. M. Gerhart, R. J. Gross, “ Fundamentals of fluid mechanics ”,
Addison-Wesley Pub. Co, 1992
109
20. F. P. Incropera, D. P. Dewitt, “ Fundamentals of heat and mass
transfer ”, Wiley, New York, 4th, 1996
21. R.W. Hornbeck, “ Numerical Methods ”, Quantum Pub., New York,
1982