跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖哲範
Che-Fan Liao
論文名稱: 脈衝微電化學之加工應用與評估
指導教授: 洪勵吾
Lih-Wu Hourng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 微電化學加工田口法
外文關鍵詞: Taguchi method, Electrochemical micro-machining
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微電化工加工( Electrochemical Micro-Machining,簡稱EMM ),是屬於非傳統加工的一種,其最大的優點在於它具有加工速度快、可加工高硬度之金屬,及加工表面無應力集中和變質層的問題。
    本實驗以外徑200 之黃銅電極管做為陰極刀具,嘗試將冷磨鋼板(SKD61)做1mm之深孔加工。並利用高壓幫浦將電解液由電極管內部送出,此縱向流動之電解液,改善一般電化學加工中,橫向電解液流動所造成的排屑不良等問題。
    本文以田口法作為分析工具,希望藉此了解各個因子(脈衝頻率
    、加工能率、操作電壓、刀具進給速度、電解液濃度)之水準對實際加工孔徑的影響趨勢,並在實驗範圍內獲得A4B1C1D4E1之最佳參數組合。另以ANOVA計算出各因子對於加工孔徑影響的相對重要性,其結果發現操作電壓(F=6.007)對加工孔徑的影響最為重要,次者為加工能率(F=3.522)。並由分析獲得各個參數水準的貢獻率,藉以能在微電化學加工的實際運用中,提供一參考的數據資料。


    Electrochemical Micro-Machining ( abbreviated as EMM ) is one of the non-traditional machining. The advantages of EMM include high speed processing, the adequated machining on any metal with high hardness, and no stress centralized and deterioration on the surface.
    In this experiment, a brass electrode with diameter of 200 micrometer is employed as cathode (cutting tool) to drill through a steel plate (SKD61) of thickness 1mm. A high-pressure pump is used to enforce the electrolyte flowing of in the electrode tube. The accumulation of the resolved metallic particles in the chemically reactive area is improved by the radial flow of the electrolyte.
    In this research, Taguchi Statistical Method is used to analyze the influence tendency of relevant parameters(such as : pulse frequency, duty, operate voltage, feed rate, electrolyte density) on the final diameter of the drilled hole, and get the optimal parameters (A4B1C1D4E1). The relative importance among factors can also be calculated by ANOVA analysis . It is found that applied voltage (F =6.007) is the most important factor, and the next one is the power duty (F =3.522). Results obtained in this experiment can be used as a referred data in the practical design of micro-electrochemical machining

    摘 要 ……………………………………………………………… I 目 錄 …………………………………………………………… III 表目錄 …………………………………………………………… VI 圖目錄 …………………………………………………………… VII 符號說明 ………………………………………………………… IX 第ㄧ章 緒 論 ……………………………………………………… 1 1-1. 前言 ……………………………………………………… 1 1-2. 文獻回顧 ………………………………………………… 3 1-2-1.數值模擬方面 ………………………………………… 3 1-2-2.實驗結果方面 ………………………………………… 5 1-3. 研究目的 ………………………………………………… 9 第二章 理論基礎 ………………………………………………… 11 2-1. 電化學加工之基本理論 ………………………………… 11 2-1-1. 電流效率 …………………………………………… 12 2-1-2. 過電壓 ……………………………………………… 12 2-1-3. 電化學反應式 ……………………………………… 13 2-1-4. 歐姆定律 …………………………………………… 14 2-2. 空隙分數、導電度、電流密度、導電度與濃度關係 … 15 2-2-1. 空隙分數 …………………………………………… 15 2-2-2. 導電度 ……………………………………………… 15 2-2-3. 電流密度 …………………………………………… 16 2-2-4. 導電度與濃度之關係 ……………………………… 16 2-3. 電解間隙 ………………………………………………… 17 2-3-1. 靜止電極刀具之間隙 ……………………………… 17 2-3-2. 進給電極刀具之間隙 ……………………………… 18 2-4. 電雙層的現象 …………………………………………… 19 2-4-1. 電解 ………………………………………………… 19 2-4-2. 電雙層 ……………………………………………… 19 第三章 實驗設備方法與步驟 …………………………………… 21 3-1. 實驗設備 ……………………………………………… 21 3-1-1. 機台結構設計 …………………………………… 21 3-1-2. 刀具進給控制系統 ……………………………… 23 3-1-3. 脈衝式直流電源供應系統 ……………………… 24 3-1-4. 電解液循環系統 ………………………………… 25 3-2. 直交表的矩陣實驗 …………………………………… 28 3-2-1. 直交表的建構 …………………………………… 28 3-2-2. 實驗分析步驟 …………………………………… 29 3-2-3. 變異數分析法 …………………………………… 30 3-3. 實驗步驟及注意事項 ………………………………… 31 3-3-1. 實驗步驟 ………………………………………… 31 3-3-2. 實驗注意事項 …………………………………… 32 第四章 結果與討論 ………………………………………… 34 4-1. 實驗之結果與分析 …………………………………… 34 4-2. 實驗參數之印證與探討 ……………………………… 36 4-3. 最適化 ………………………………………………… 39 4-4. 分析結果之探討 ……………………………………… 40 第五章 結 論 ………………………………………………… 42 5-1. 結論 …………………………………………………… 42 5-2. 未來展望 ……………………………………………… 43 參 考 文 獻 …………………………………………………… 45 表 ……………………………………………………………… 52 圖 ……………………………………………………………… 63 表 目 錄 表(2-1)電解液 之物理性質…………………………… 52 表(2-2)合金工件材料之成分(Anode)……………………… 52 表(2-3)離子移動率 …………………………………………… 53 表(2-4)比電導度 值 ……………………………………… 53 表(3-1)標準直交表 …………………………………………… 54 表(3-2) (45)直交表 …………………………………… 55 表(4-1)脈衝與非脈衝電源供應器之比較 …………………… 56 表(4-2)可控因子及其水準配置表 …………………………… 57 表(4-3)加工參數評估實驗之直交表矩陣設置 ……………… 58 表(4-4)實驗資料彙整 ………………………………………… 59 表(4-5) 之變異數分析 ……………………………………… 60 表 (4-6) 加法模式下之預測 …………………………………… 61 表 (4-7) 電壓與頻率之加工影響比較 ………………………… 62 圖 目 錄 圖(1-1) 傳統電化學加工機台示意圖 ………………………… 63 圖(1-2) 傳統電化學加工機構配置方塊圖 …………………… 64 圖(1-3) 電化學鑽孔之軸對稱孔穴加工區域示意圖 ………… 64 圖(1-4) 裸露刀具加工電場分佈影響 ………………………… 65 圖(1-5) 鑽頭刀具加工電場分佈影響 ………………………… 65 圖(1-6) 側邊絕緣刀具加工電場分佈影響 …………………… 66 圖(1-7) 微電化學加工三種刀具之加工影響 ………………… 66 圖(1-8) 電流密度分佈圖 ……………………………………… 67 圖(1-9) 不同脈衝週期下的影響 ……………………………… 67 圖(2-1) 古以-查卜曼擴散電雙層 …………………………… 68 圖(3-1) 3-D懸臂式機械手臂 ………………………………… 69 圖(3-2) 3-D實體加工機台 …………………………………… 70 圖(3-3) 電化學加工刀具種類 ………………………………… 71 圖(3-4) 夾持器之設計 ………………………………………… 71 圖(3-5) 三抓精密夾頭 ………………………………………… 72 圖(3-6) 信號產生器與功率放大器 …………………………… 72 圖(3-7) 刀具頂端之損壞 ……………………………………… 73 圖(3-8) 實際刀具之損壞情形 ………………………………… 73 圖(4-1) 因子效果圖 …………………………………………… 74 圖(4-2) 最適水準A4B1C1D4E1之加工孔徑 …………………… 75 圖(4-3) 第一組實驗A1B1C1D1E1之加工孔徑 ………………… 75 圖(5-1) 電解液之高壓供應裝置 ……………………………… 76

    1. B. Bhattacharyya , B. Doloi and P. S. Sridhar, “Electrochemical micro-machining: new possibilities: for micro-manufacturing,” Journal of Materials Processing Technology, Vol. 113, pp. 301-305 (2001).
    2. 木本康雄著,賴耿陽譯著,“精密加工之電學應用”,復漢
    出版社 (1982).
    3. 佐藤敏一著,賴耿陽譯著,“金屬腐蝕加工技術”,復漢出
    版社 (1986).
    4. 朱樹敏,“電化學加工(ECM)及相關特種加工工藝技術,電
    化學加工(ECM)及相關特種加工工藝技術研討會”,台大慶
    齡工業研究中心(1997).
    5. J. F. Thorpe and R. D. Zerkle, “Theoretical Analysis of the
    Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by
    Electrochemical Machining,” C.L. Faust, editor, Fundamentals of
    Electrochemical Machining, Electrochemical Society, Princeton,
    pp.1-39 (1971).
    6. D. E. Collete, R. C. Hewson-Browne and D. W. Windle, “A
    Complex Variable Approach to Electrochemical Machining
    Problems,” Journal of Engineer Mach. , Vol. 4, pp. 29-37 (1970).
    7. R. Hunt, “The Numerical Solution of Ellipitic Free Boundary
    Problems Using Multigrid Techniques,” Comp. Phys. , Vol. 65, pp. 448-461(1986).
    8. R. Hunt, “An Embedding Method for the Numerical Solution of
    the Cathod Design Problem in Electrochemical Machining,” International Journal for Numerical Methods in Engineering,
    Vol. 29, pp. 1177-1192 (1990).
    9. 蔡和蒼,“反求法在電化學加工刀具設計上之應用”,國立中
    央大學機械研究所碩士論文(1995).
    10. H. Tipton, “Dynamics of Electrochemical Machining Proc. ,” 5th
    Int.Conf. Mach. Tool Res. , Birmingham, England, pp. 509-522,
    Sept. (1964).
    11. K. Kawafune, T. Mikoshiba, K. Noto and K. Hirata, “Accuracy in
    Cavity Sinking by ECM,” Annals of CIRP, Vol. 15 , pp.
    65/1-65/13(1967).
    12. J. F. Thorpe and R. D. Zerkle, “An Analytical Basis for
    Investigation the Dynamics of Electrochemical Machining,”
    Report UCME-318-1 , Mechanical Engineering Dept. , University
    of Cincinnati, Ohio, December (1967).
    13. J. F. Thorpe, “On the Kinematics of Electrochemical Machining,”
    ASME Winter Annual Meeting, New York, Dec. (1968).
    14. J. F. Thorpe and R. D. Zerkle, “Analytic Determination of the
    Equilibrium Electrode Gap in Electrochemical Machining,” Int.
    Jour. Mach. Tool Des. And Res. , Vol. 9, pp. 131-144 (1969).
    15. 陳志誠,“電化學加工刀具之設計”,國立中央大學機械研
    究所碩士論文(1987).
    16. V. K. Jain, P. G. Yogindra and S. Murugan, “Prediction of Anode
    Profile in ECBD and ECD Operations,” Int. J. Mach. Tools Manufact. , Vol. 27, 1, pp. 113-114 (1987).
    17. 陳川吉,“電化學加工過程熱流現象之分析”,國立中央大
    學機械研究所碩士論文 (1990).
    18. 張啟生,“二維熱流效應對電化學加工反求工具形狀之分析”
    ,國立中央大學機械工程研究所博士論文(1991).
    19. L. W. Hourng and C. S. Chang, “Numerical Calculation of
    Electrochemical Drilling,” J. of Applied Electrochemistry,
    Vol. 23, pp. 316-321 (1993).
    20. 鍾兆才,“熱流場參數對電化學加工工件外形預估與工具電
    極設計影響之探討”,國立中央大學機械研究所碩士論文
    (1996).
    21. J. Hopenfeld and R. R. Cole, “Electrochemical Machining –
    Prediction and Correlation of Process Variables,” Journal of
    Engineering for Industry, pp.455-461, November (1966).
    22. V. Chetty and V. Radhakrishnan, “Electrolyte Velocity
    Measurement Using LDV in an Experimental Electrochemical Machining Setup,” Int. J. Mach. Tool Des. Res. Vol. 19, pp. 157-163 (1979).
    23. C. Y. Yu, Z. Y. Hou, X. K. Yao and Y. S. Yang, “The
    Experimental Investigations on Gas Bubble Distribution in
    Electrochemical Machining Gap,” Proceed. of the Int.
    Symposiam on Electromachining , pp. 393-403 (1983).
    24. V. Lescuras, I. Zouari, F. Valentin and F. Lapicque, “A Photo
    Physical Technique For The Measurement Of Local Oxygen
    Concentration Near An Electrode Surface,” Journal of Applied
    Electrochemistry, Vol. 24, pp. 652-657(1994).
    25. 鍾俊傑,“電化學加工中氣泡形程與發展之實驗分析”,國立
    中央大學機械研究所碩士論文 (1997).
    26. 諶芝侖,“電化學加工過程中氣泡之觀測與分析”, 國立中
    央大學機械研究所碩士論文 (1998).
    27. Y. Li, Y. Zheng, G. Yang and L. Q. Peng , “Localized
    Electrochemical Micromachining with Gap Control,” Sensors and Actuators , A 108, pp. 144-148(2003).
    28. B. Bhattacharyya & J.Munda, “Experimental Investigation on the
    Influent of Electrochemical Machining Parameters on Machining
    Rate and Accuracy in Micromachining Domain,” International
    Journal of Machine Tool&Manufacture, Vol43, pp. 1301-1310
    (2003).
    29. H. Hocheng,Y.H. Sun,S.C. Lin and P.S. Kao, “A Material
    Removal Analysis of Electrochemical Machining Using Flat-End
    Cathode,” Journal of Material Processing Technology ,Vol. 140,
    pp. 264-268(2003).
    30. A. H. Meleka and D. A. Glew, “ Electrochemical Machining ,”
    International Metals Reviews , September, pp.229-252 (1977).
    31. O.V. Krishnaiah Chetty and V. Radhakrishnan, “ Surface Studies
    in ECM Using an Relocation Machining Fixture,” International
    Journal of Machine Tool Design and Research ,Vol. 18, pp. 1-8
    (1978).
    32. V. K. Jain, Vinod Kuman Jain and P. C. Pandey, “Corner
    Reproduction Accuracy in Electro-Chemical Drilling (ECD) of
    Blind Holes,” Journal of Engineering for Industry, Vol. 106,
    pp. 55-62 (1984).
    33. F. Zawistowski, “New System of Electrochemical Form
    Machining Using Universal Rotation Tools,” Int. J. Mach. Tools
    Manufacture,Vol. 30, No. 3, pp. 475-483 (1990).
    34. I. M. Crichton and J. A. Mcgeough, “Studies of the Discharge
    Mechanicals in Electrochemical Arc Machining,” Journal of
    Applied Electrochemistry, Vol. 15, pp. 113-119, (1985).
    35. Y. Chengye and Z.X.Liu , “Pulse Electrochemical Machining,”
    Journal of Nanjing Aeronautical Institute, pp.74-99 ,May(1988).
    36. Hiroaki Suzuki, “Microfabrication of Chemical Sensors and
    Biosensors for Environmental Monitoring,” Materials Science and
    Engineering C, Vol. 12, pp. 55-61 (2000).
    37. Viola Kirchner & Philippe Allongue, “Electrochemical Micro-
    Machining,” Accounts of Chemical Research, Vol. 34, No.5, pp.
    371-377(2001)
    38. V. Kirchner, X.H. Xia and R. Schuster, “Electrochemical
    Nanostructuring with Ultrashort Voltage pulses,” Acc. Chem. Res.
    Lond. ,Vol. 34, pp.371-377 (2001).
    39. M. Kock, V. Kirchner, R. Schuster, “ Electrochemical
    Micromachining with Ultrashort Voltage Pulses-a Versatile
    Method with Lithographical Precision,” Electrochimica Acta,Vol.
    48,pp. 3213-3219 (2003).
    40. P. Novak and I. Rousar , “ Intergranular Corrosion in
    Electrochemical Machining ,” Materials Chemistry and Physics ,
    Vol. 10 , pp. 155-161 (1984).
    41. C. Gabrielli , F. Huet , R. Wiart and J. Zoppas-Ferrira , “Dynamic
    Behavior of an Electrolyze with a Two Phase Solid-liquid
    Electrolyte, Part 1: Spectral Analysis of Potential Fluctuations,”
    Journal of Applied Electrochemistry, Vol. 24, pp.1228-1234 (1994).
    42. J. F. Thorpe and R. D. Zerkle, “Theroretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electroochemical Machining,” Electrochemical Society Princeton, (1971),pp. 1-39.
    43. 楊榮顯, “工程材料學” ,全華科技圖書(1997).
    44. 田福助, “電化學基本原理與應用”,五洲出版社(2004)
    45. 黎正中, “穩健設計之品質工程” , 新世界出版社, 原著: S.
    Phadke , AT&T Bell Lab and N. J. Holmdel.(1989).

    QR CODE
    :::