| 研究生: |
莊士鋒 Shih-Feng Chuang |
|---|---|
| 論文名稱: |
添加鐵、鉛、銅元素對鋁基複合材料性質之影響 Effect of Fe, Pb and Cu additives on the properties of Al matrix composites |
| 指導教授: |
李勝隆
Sheng-Long Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 複合磁石 、鋁矽複合材料 、鐵 、銅 、鉛 、擠壓鑄造 、熱壓燒結 、磁性質 、磨耗 、腐蝕 、釹鐵硼 、金屬基複合材料 |
| 外文關鍵詞: | Squeeze, Nd-Fe-B, MMC, Composite magnets, Hot pressing, Magnetic properties, Wear, Corrosion, Cu, Pb, Fe, Al-Si composite |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以擠壓鑄造法製作純Al、A356、A356+0.8Fe三種Al基Nd-Fe-B複合磁石,以探討Fe元素對複合磁石之微結構、機械性質及磁性質的影響,並以熱壓燒結法製作Al-Si-Cu-Pb複合材料,以探討添加Pb、Cu元素對其微結構、硬度、磨耗、腐蝕及磨耗腐蝕等性質的影響。
由實驗結果得知,三種Al基Nd-Fe-B複合磁石在相同的體積分率(72±1%)下,純Al基地之Nd-Fe-B複合磁石之反應層最為明顯,隨著Al基地中Fe含量的增加,反應層厚度相對減少,而在A356+0.8%Fe合金基地之Nd-Fe-B複合磁石中,其反應層最少。三種高體積分率之複合磁石在抗彎曲強度、硬度等機械性質上,不因Al基地的不同而有顯著的差異。在磁性質方面,隨著Al基地中Fe含量的增加,Nd-Fe-B複合磁石的殘留磁束密度Br值由0.51 T增加到0.66 T,而磁能積(BH)max由36.8 kJ/m3增加到63.2 kJ/m3,且不影響複合磁石之本質矯頑磁力iHc,幾乎與原Nd-Fe-B磁粉相同。
以熱壓燒結法製作Al-20Si基複合材料,添加5或10 wt%的Pb以及3 wt%的Cu元素,在無潤滑情形下進行磨耗試驗,並在3.5 wt%氯化鈉(NaCl)水溶液中(pH=6.7)進行磨耗腐蝕試驗。
結果顯示,隨Pb的添加量增加,Al-Si-Pb及Al-Si-Cu-Pb複合材料的乾磨耗量降低,添加Cu可提高Al-Si複合材料的硬度,並降低乾磨耗量。複合材料的腐蝕電位Ecorr,無論在熱壓燒結或熱處理後,皆因Cu的添加而上升,並隨Pb的添加量增加而下降。腐蝕電流密度icorr在熱壓燒結後,因Pb與Cu的添加而增加,在熱處理後Al-Si-Cu及Al-Si-Cu-Pb複合材料的腐蝕電流密度icorr降低。添加Pb元素可提高Al-Si及Al-Si-Cu複合材料的磨耗腐蝕性質,在本研究中,同時添加Pb與Cu的Al-Si-Cu-Pb複合材料具有最佳的乾磨耗及磨耗腐蝕性質。
This work studies the effect of Fe on the microstructure, mechanical and magnetic properties of three aluminum metal matrix Nd-Fe-B composite magnets. The composite magnets are prepared by squeezing three aluminum alloys (pure Al, A356 alloy and A356+0.8%Fe alloy) into preformed Nd-Fe-B magnetic powder.
The results indicate that the pure Al-matrix Nd-Fe-B composite magnet has the most active reaction layer. However, the thickness of the reaction layer decreases as the Fe content in the matrix increases. Increasing the Fe content in aluminum matrix increases the remanence (Br) of the composite magnets from 0.51 to 0.66 T, and increases the energy product ((BH)max) from 36.8 to 63.2 kJ/m3. The intrinsic coercivity (iHc) of these composite magnets is nearly the same as the original magnetic powder.
Dispersed lead and copper particles in aluminum-silicon matrix composites were fabricated by hot pressing. Effects of the addition of 5 wt.% and 10 wt.% lead and 3 wt.% copper particles on wear and wear-corrosion properties of Al-20Si composites have been evaluated. Wear is performed at ambient without lubricant, and wear-corrosion is executed in 3.5 wt.% NaCl solution (pH 6.7).
The results show that the dry wear loss of Al-Si-Pb and Al-Si-Cu-Pb composites decreased as the Pb content increased. The hardness increased and the dry wear loss was reduced with the addition of Cu particles. The corrosion potential, Ecorr, increased with the presence of Cu and with the decrease of the Pb content, both for pressed and heat-treated conditions. The corrosion current density, icorr, increased with Cu and Pb incorporation into composites in the as pressed state, and decreased after heat treatment for Al-Si-Cu and Al-Si-Cu-Pb composites. The wear-corrosion property was improved by the addition of the Pb phase to Al-Si and Al-Si-Cu composites. Al-Si-Cu-Pb composites exhibited better dry wear and wear corrosion resistance than other composites in this study.
1. M. Taya and R. J. Arsenault, “Metal Matrix Composites—Thermomechanical Behavior”, Pergamom Press, Oxford., 1989, pp.1-5.
2. A. P. Sannino, H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites : review and discussion”, Wear, 189, 1995, pp.1-19.
3. J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton, J. Appl. Phys., 55, 1984, pp.2078.
4. B. M. Ma, J. W. Herchenroeder, B. Smith, M. Suda, D. N. Brown and Z. Chen: J. Magn. Magn. Mater., 239, 2002, pp.418–423.
5. S. Pandian, V. Chandrasekaran, G. Markandeyulu, K.J.L. Iyer, K.V.S. Rama Rao, “Effect of Co, Dy and Ga on the magnetic properties and the microstructure of powder metallurgically processed Nd–Fe–B magnets”, Journal of Alloys and Compounds, vol.364, 2004, pp.295–303.
6. R. S. Mottram, A. J. Williams, I. R. Harris, “Blending additions of cobalt to Nd16Fe76B8 milled powder to produce sintered magnets”, Journal of Magnetism and Magnetic Materials , Vol.217, 2000, pp.27.
7. R. S. Mottram, A. J. Williams, I. R. Harris, “Blending additions of aluminum and cobalt to Nd16Fe76B8 milled powder to produce sintered magnets”, Journal of Magnetism and Magnetic Materials, Vol.222, 2000, pp.305-313.
8. O. Filip, A .M. El-Aziz, R. Hermann, K. Mummert, L. Schultz, “Effect of Al additives and annealing time on microstructure and corrosion resistance of Nd–Fe–B alloys”, Materials Letters, Vol.51, 2001, pp.213–218.
9. L. Schultz, A. M. El-Aziz, G. Barkleit, K. Mummert, “Corrosion behaviour of Nd–Fe–B permanent magnetic alloys”, Materials Science and Engineering A, Vol.267, 1999, pp.307–313.
10. J. F. Herbst and J. J. Croat, “Neodymium-iron-boron permanent magnets”, Journal of Magnetism and Magnetic Materials, 100,1991 , pp.57-78.
11. Hamano, “Overview and outlook of bonded magnets in Japan”, Journal of Alloys and Compounds, vol.222, 1995, pp.8-12.
12. YU. M. Rabinovich, V. V. Sergeev, A. D. Maystrenko, V. Kulakovsky, S. Szymura and H. Baia, “Physical and mechanical properties of sintered Nd-Fe-B type permanent magnets, Intermetallics”, vol.4, 1996, pp.641-645.
13. N. Rolinson, M. M. A. shraf and I. R. Harris, “New developments in bonded Nd-Fe-B magnets”, Journal of Magnetism and Magnetic Materials, Vol.80, 1989, pp.93-96.
14. R. W. Lee, “Hot-pressed neodymium-iron-boron magnets”, Applied Physics Letters, Vol.46, 1985, pp.790-791.
15. S. Guruswamy, M. K. McCarter and J. E. Shield, “Explosive compaction of magnequench Nd-Fe-B magnetic powder”, Journal of Applied Physics, Vol.79, No.8, 1996, pp.4851-4853.
16. J. F. Ji and C. G. Chao, “A novel technique for manufacturing metal-bonded Nd-Fe-B magnets by squeeze casting”, Metallurgical and materiala transcation A, Vol.33A, 2002, pp.637-646.
17. G. Timmermans, L. Froyen, “Fretting wear behaviour of hypereutectic P/M Al-Si in oil enviroment”, Wear, 230, 1999, pp.105-117.
18. Ashok Sharma, T. V. Rajan, “Bearing characteristics of cast leaded aluminium-silicon alloys”, Wear, 197, 1996, pp.105-114.
19. D. Nath, R. Bolls, S. Chandra: Powder Metall. Int., 24, 1992, pp. 84-87.
20. R. G. Wendt, W. C. Moshier, B. Shaw, P. Miller, D. L. Olson, “Corrosion-Resistance aluminum matrix for graphite-aluminum composites”, Corrosion, Vol.50, No.11, 1994, pp.819-826.
21. Hang-Moule Kim, Taek-Soo Kim, C.Suryanarayana, Byong-Sun Chun, “Microstructure and wear characteristics of rapidly solidified Al–Pb–Cu alloys”, Materials Science and Engineering A, Vol.287, 2000, pp.59-65.
22. J. Z. Zhao, S. Drees, L. Rathke, “Strip casting of Al–Pb alloys — a numerical analysis”, Materials Science and Engineering A, Vol.282, 2000, pp.262-269.
23. M. Zhu, Y. Gao, C. Y. Chung, “Improvement of the wear behaviour of Al–Pb alloys by mechanical alloying”, Wear, 242, 2000, pp.47-53.
24. S. N. Ojha, A. K. Tripathi, S. N. Singh: Inter. Powder. Metallurgy., 25, 1993, pp.65.
25. S. Mohan, V. Agarwala, S. Ray: Mater. Trans. JIM., 33, 1992, pp.1057-1062.
26. R. Grag, S. Mohan, V.Agarwala, R. C. Agarwala: Z. Metallkd., 84, 1993, pp.721.
27. M. L. Mackay: Met. Prog., 111, 1977, pp.32.
28. P. J. Ward, H. V. Atkinson, P. R. G. Anderson, L. G. Elias, B. Garcia, L. Kahlen, J. -M. Rodriguez-Ibabe, “Semi-solid processing of novel MMCs based on hypereutectic aluminium-silicon alloys”, Acta Materialia, Vol.44, 1996, pp.1717-1727.
29. S. K. Srivastava, S. Mohan, V. Agarwala, R. C. Agrawala: Metall. Mater, Trans., 25A, 1994, pp.851.
30. L. H. Hihara and R. M. Latanision: Int. Mater. Rev., 39, 1994, pp. 245-264.
31. T. F. Wu, Z. W. Qiu, S. L. Lee, Z. G. Lee and J. C. Lin, ”Effects of graphite on wear and corrosion behaviour of SiCp-reinforced copper matrix composites formed by hot pressing”, Corrosion Science, Engineering and Technology, Vol.39, iss.3, 2004, pp.229-235.
32. C. J. Tseng, Sheng-Long Lee, Ten-Fu Wu and Jing-Chie Lin, “Effects of Fe Content on Microstructure and Mechanical Properties of A206 Alloy”, Materials Transactions JIM, Vol.41, No.6, 2000, pp.708-713.
33. William D. Callister, Jr, “Materials science and engineering an introduction”, 4rd ed., John Wiley & Sons, Inc., 1996, pp.659-687.
34. 張文成,洪英彰,”磁性材料”,粉末冶金技術手冊,中華民國粉末冶金協會, 1994, pp.458-484.
35. V. Panchanathan, ”Magnequench magnets status overview”, JMEPEG, 4, 1995, pp.423-429.
36. D. Rodrigues, G. V. Concilio, F. Landgraf and A. C. Zanchetta, “Proc.of the 14th internation workshop Rare Earth Magnets and their application”, 1996, pp.580-589.
37. John E. Hatch, “Aluminum: properties and physical metallurgy”, ASM International, Metals Park, Ohio, 1984, pp.320-350.
38. J. R. Davis & Associates, “ASM specialty handbook: aluminum and aluminum alloys”, ASM International Materials Park, Ohio, 1994, pp.89-120.
39. J. E. Gruzleski and B. M. Closset, “The treatment of liquid aluminum-silicon alloys”, AFS Inc., Illinois, 1990, p.13.
40. J. R. Davis & Associates, “ASM specialty handbook: aluminum and aluminum alloys”, ASM International Materials Park, Ohio, 1994, pp.555.
41. J. E. Hatch, ”Aluminum: properties and physical metallurgy”, London, Butterwordths and Co., Ltd, 1976, pp.346-347.
42. J. L. Jorstad, “Hypereutectic Al-Si casting alloys: 25 years,what’s next” AFS Transaction, V104, 1996, pp.669-671.
43. R. W. Bruner, “Metallurgy of die casting alloys” , SDCE. Detroit. MI, 1976, pp.25.
44. F. H. Samuel, A. M. Samuel, “Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn(380) alloy castings”, Journal of Materials Science, V30, 1995, pp.2531-2510.
45. L. F. Mondolfo, “Aluminum alloys: structure and properties”, London, Butterworth’s, Ltd., 1976, pp.253-266.
46. K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom probe study of the precipitation process in Al-Cu-Mg-Ag alloys”, Acta Metall. Mater., Vol.41, 1993, pp.829-838.
47. B. K. Prasad, “Dry sliding wear response of some bearing alloys as influenced by the nature of microconstituents and sliding conditions”, Metallurgical and Materials Transactions A, Vol.28A, 1997, pp.809-815.
48. C. S. Sivaramakrishnan, R. K. Mahanti, R. Kumar, “The dispersion of lead and graphite in aluminum alloys for bearing applications”, Wear, 96, 1984, pp.121-134.
49. A. D. Sarkar, J. Clarke, “Wear characteristics, frictions and surface topography observed in the dry sliding of as-cast and aging-hardening Al-Si alloys”, Wear, 75, 1982, pp.71-85.
50. Szu Yin Yu, Hitoshi Ishii, Keiichiro Tohgo, Young Tae Cho, Dongfeng Diao, “Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite”, Wear, 213, 1997, pp.21-28.
51. S. C. Tjong, K. C. Lau, “Properties and abrasive wear of TiB2/Al-4%Cu composites produced by hot isostatic pressing”, Composites Science and Technology, 59, 1999, pp.2005-2013.
52. Rong Chen, Akira Iwabuchi, Tomoharu Shimizu, Hyung Seop Shin, Hidenobu Mifune, “The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites”, Wear, 213, 1997, pp.175-184.
53. Jian Zhang, Degui Zhu, Liu Yang, Shizhuo Li, “Wear behavior of lanxide Al2O3/Al composite”, Wear, 215, 1998, pp.34-39.
54. ASTM G40-82, “Annual book of ASTM standards”, Vol.03.02, 1984, pp.239.
55. A. P. Sannino and H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion”, Wear, Vol.189, 1995, pp.1-19.
56. K. G. Budinski, “Surface engineering for wear resistance”, Prentice Hall, 1988, pp.16-18.
57. K. H. Z. Gahr, “Microstructure and wear of materials”, Chapter 6 Sliding wear, Elsevier Science Publisher, Amsterdam, Netherlands, 1987, pp.351-495.
58. D. A. Jones, “Principles and prevention of corrosion”, 2rd ed., Prentice Hall International, Inc., 1997, pp.44-524.
59. J. R. Davies, “ASM specialty handbook : Aluminum and Aluminum alloys”, William W. Scott, Jr., 1993, pp.579-580.
60. M. G. Gontana, “Corrosion engeering”, 3rd ed., McGraw-Hill Inc., 1986, pp.41-55.
61. C. K. Fang, C. C. Huang, T. H. Chuang, “Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminum matrix composites”, Metallurgical and Materials Transactions A, Vol.30A, 1999, pp.643-651.
62. C. K. Lee, H. C. Shih, “Structure and corrosive wear resistance of plama-nitrided alloy steels in 3% sodium chloride solutions”, Corrosion Vol.50, No.11, 1994, pp.848-856.
63. I. Iwasaki, S. C. Riemer, J. N. Orlich, “Corrosive and abrasive wear in ore grinding”, Wear, 1985, Vol.103, pp.253-267.
64. S. W. Watson, B. W. Madsen, S. D. Cramer, “Wear-Corrosion study of white cast irons”, Wear, Vol.181-183, 1995, pp.469-475.
65. Y. F. Lee and S. L. Lee, “Effects of Al additive on the mechanical properties of silicon reinforced Cu matrix composites”, Scripta Materialia., vol.41, No.7, 1999, pp.773-778.
66. Y. F. Lee, S. L. Lee, C. H. Huang and C. K. Lee, “Effects of Fe additive on properties of Si reinforced copper matrix composites fabricated by vacuum infiltration”, Powder Metallurgy, Vol.44, No.4, 2001, pp.339-1343.
67. S. L. Lee, Y. H. Tan, S. N. Yie and J. C. Lin, “Effect of preaging on precipitation hardening in Al-Si-Mg alloys”, Scand. Joural Of Metallurgy, Vol.27, 1998, pp.112-115.
68. P. S. Wang, S. L. Lee, C. Y. Yang and J. C. Lin, “Effects of Be and nonequilibrium heat treatment on mechanical properties of 319.0 alloys with 1.0% Fe”, Materials Science and Technology, Vol.20, 2004, pp.539-545.
69. C. Y. Yang, S. L. Lee, C. K. Lee and Y. L. Lin, “Effects of Be and Fe content on the mechanical and corrosion behaviors of A357 alloys”, Materials Chemistry & Physics, Vol.93, 2005, pp.412-419.
70. L. F. Mondolfo: “Aluminum alloys: structure and properties”, Butterworths, London, 1976, pp.282-289.
71. M. G. Garrell, A. J. Shih, B. M. Ma, E. L. Curzio and R. O. Scattergood, “Mechanical properties of polyphenylene-sulfide (PPS) bonded Nd–Fe–B permanent magnets”, Materials Science and Engineering A, Vol.359, 2003, pp.375-383.
72. M. G. Garrell, B. M. Ma, A. J. Shih, E. L. Curzio and R. O. Scattergood, “Mechanical properties of Nylon bonded Nd–Fe–B permanent magnets”, Journal of Magnetism and Magnetic Materials, vol.257, 2003, pp. 32-43.
73. L. F. Mondolfo: “Aluminum Alloys: Structure and Properties”, Butterworths, London, 1976, pp.99.
74. ASTM Standard B328-96, Vol.02.05, ASTM, Philadelphia, PA, USA, 1999.
75. ASTM Standard: G 69-97, Vol. 03.02., ASTM, Philadelphia, PA, USA, 1999.
76. D. Y. Ying, D. L. Zhang, “Solid-state reaction between Cu and Al during mechanical alloying and heat treatment”, Journal of Alloys and Compounds, 311, 2000, pp.275-282.
77. T. G. Nieh and R. G. Karlac, Scripta Metall., 18, 1984, pp. 25.
78. T. Christman and S. Suresh, Brown University Report No. NSF-ENG-8451092/1/87, 1987.
79. I. A. Ibrahim, F. A. Mohamed, E. J. Lavernia, J. Mater. Sci., 26, 1991, pp.1137-1156.
80. S.Long, O. Beffort, C.Cayron, C. Bonjour, “Microstructure and mechanical properties of a high volume fraction SiC particle reinforced AlCu4MgAg squeeze casting”, Materials Science and Engineering A, Vol.269, 1999, pp.175-185.
81. K. I. Moore, D. L. Zhang, B. Cantor, “Solidification of Pb particles embedded in Al”, Acta metal. Mater., vol.38, No.7, 1990, pp.1372-1342.
82. Ashok Sharma, T. V. Rajan, “Bearing characteristics of cast leaded aluminum- silicon alloys”, Wear, 197, 1996, pp.105-114.
83. J. Clarke, A. D. Sarkar, “Topographical features observed in a scanning electron microscopy study of aluminum alloy surface in sliding wear”, Wear, 69, 1981, pp.1-23.
84. Hang-Moule Kim, Taek-Soo Kim, C. Suryanarayana, Byong-Sun Chun, “Microstructure and wear characteristics of rapidly solidified Al-Pb-Cu alloys”, Materials Science and Engineering A, Vol.287, 2000, pp.59-65.