跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳重昱
Chung-Yu Chen
論文名稱: Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects
指導教授: 楊肅煜
Suh-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 31
中文關鍵詞: 不可壓縮納維爾-史托克方程流固耦合沉浸邊界法投影法直接施力法
外文關鍵詞: incompressible Navier-Stokes equations, fluid-solid interaction, immersed boundary method, projection method, direct-forcing method
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的主要目的是實現文獻[11]中所提出的一種兩階段直接施力沉浸邊界投影方法模擬流體與移動固體交互作用的動力行為,其中每一沉浸固體都配有一個給定的速度。這個兩階段的方法結合了直接施力沉浸邊界投影方法和預測-修正策略,其中引入一個只分佈在固體上的離散虛擬力並將其附加到流體動量方程式來處理沉浸固體邊界上的無滑移邊界條件。具體來說,首先使用隱式尤拉公式去離散不可壓縮納維爾-史托克方程的時間變數並應用顯式一階的方法線性化其非線性對流項,然後採用預測-修正直接施力沉浸邊界投影法去求解時間離散後的方程式,在預測和修正階段中我們皆採用肖林時間一階的投影法。另外,對於投影法計算中的空間離散,我們採用交錯網格中央差分格式。我們執行兩個關於多個移動固體的數值實驗來說明此演算法的效率。數值結果顯示這個簡單的預測-修正沉浸邊界投影法對流固耦合問題可以求取合理的數值結果。


    The aim of this thesis is to implement the two-stage direct-forcing immersed boundary
    projection method proposed by Horng et al. [11] for simulating the dynamics
    of fluid interacting with moving solid objects, where each immersed solid object is
    equipped with a prescribed velocity. This two-stage approach combines a directforcing
    immersed boundary projection method with a prediction-correction strategy,
    in which a discrete virtual force distributed on the solid object is introduced and
    appended to the fluid momentum equations to accommodate the no-slip boundary
    condition at the immersed solid boundary. Specifically, we first use the implicit Euler
    formula to discretize the temporal variable in the incompressible Navier-Stokes
    equations and apply the explicit first-order approximation to linearize the nonlinear
    convection term. We then employ a predicition-correction direct-forcing immersed
    boundary projection method to solve the time-discretized equations, where we adopt
    the first-order in time Chorin’s projection method in both prediction and correction
    stages. For spatial discretization in the projection computations, we employ the central
    difference scheme on the staggered grids. We give two numerical examples of
    multiple moving solid objects to illustrate the performance of the algorithm. From the
    numerical results, we find that this simple predicition-correction immersed boundary
    approach can achieve reasonable results for fluid-solid interaction problems.

    中文摘要 ……………………………………………………………………… i 英文摘要 ……………………………………………………………………… ii Contents ……………………………………………………………………… iii Abstract ……………………………………………………………………… 1 一 Introduction …………………………………………………… 2 二 Helmholtz-Hodge decomposition and Chorin’s projection method …………………………………………………………… 5 三 A two-stage direct-forcing immersed boundary projection method …………………………………………………………… 9 四 Spatial discretization in the projection computations … 12 五 Numerical experiments ………………………………………… 14 六 Concluding remarks ……………………………………………… 22 References …………………………………………………………………… 23

    [1] O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow,
    Computers & Fluids, 27 (1998), pp. 421-433.
    [2] D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible
    Naver-Stokes equatons, Journal of Computational Physics, 168 (2001),
    pp. 464-499.
    [3] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of
    Computation, 22 (1968), pp. 745-762.
    [4] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes
    equations, Mathematics of Computation, 23 (1969), pp. 341-353.
    [5] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 2nd
    Edition, Springer-Verlag, New York, 1990.
    [6] W. E and J.-G. Liu, Projection method I: convergence and numerical boundary
    layers, SIAM Journal on Numerical Analysis, 32 (1995), pp. 1017-1057.
    [7] W. E and J.-G. Liu, Projection method III: spatial discretization on the staggered
    grid, Mathematics of Computation, 71 (2002), pp. 27-47.
    [8] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Communications
    in Mathematical Sciences, 1 (2003), pp. 317-332.
    [9] B. E. Griffith, An accurate and efficient method for the incompressible Navier-
    Stokes equations using the projection method as a preconditioner, Journal of Computational
    Physics, 228 (2009), pp. 7565-7595.
    [10] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for
    incompressible flows, Computer Methods in Applied Mechanics and Engineering,195
    (2006), pp. 6011-6045.
    [11] T.-L. Horng, P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A simple direct-forcing immersed
    boundary projection method with prediction-correction for fluid-solid
    interaction problems, preprint, 2016.
    [12] P.-W Hsieh, M.-C Lai, S.-Y Yang, and C.-S You, An unconditionally energy stable
    penalty immersed boundary method for simulating the dynamics of an inextensible
    interface interacting with a solid particle, Journal of Scientific Computing, 64
    (2015), pp. 289-316.
    [13] C.-C. Liao, Y.-W. Chang, C.-A. Lin, and J. M. McDonough, Simulating flows with
    moving rigid boundary using immersed-boundary method, Computers & Fluids,
    39 (2010), pp. 152-167.
    [14] J.-G. Liu, J. Liu, and R. L. Pego, Stable and accurate pressure approximation
    for unsteady incompressible viscous flow, Journal of Computational Physics, 229
    (2010), pp. 3428-3453.
    [15] D. Z. Noor, M.-J. Chern, and T.-L. Horng, An immersed boundary method to
    solve fluid-solid interaction problems, Computational Mechanics, 44 (2009), pp.
    447-453.
    [16] C. S. Peskin, Flow patterns around heart valves: a numerical method, Journal of
    Computational Physics, 10 (1972), pp. 252-271.
    [17] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), pp. 479-
    51
    [18] A. Quarteroni, F. Saleri, and A. Veneziani, Factorization methods for the numerical
    approximation of Navier-Stokes equations, Computer Methods in Applied Mechanics
    and Engineering, 188 (2000), pp. 505-526.
    [19] D. Russell and Z. J. Wang, A Cartesian grid method for modeling multiple moving
    objects in 2D incompressible viscous flow, Journal of Computational Physics,
    191 (2003), pp. 177-205.
    [20] R. Temam, Sur l’approximation de la solution des ´equations de Navier-Stokes
    par la m´ethode des pas fractionnaires II, Archive for Rational Mechanics and Analysis,
    33 (1969), pp. 377-385.
    [21] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Revised Ed.,
    Elsevier Science Publishers B.V., Amsterdam, 1984.
    [22] S. Xu and Z. J. Wang, An immersed interface method for simulating the interaction
    of a fluidwith moving boundaries, Journal of Computational Physics, 10 (2006),
    pp. 454-493.

    QR CODE
    :::