跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林紀昌
Chi-Chang Lin
論文名稱: 複合高分子電解質
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 94
語文別: 中文
論文頁數: 189
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機奈米複合材料為高分子電解質帶來許多電性與熱性質上的改善,除了優越的機械穩定性、高離子導電度、大的電化學穩定區間之外,尚能提供與電極良好的介面穩定性。
    針對本研究所製備之二氧化鈦奈米管以及經過高分子表面修飾的二氧化鈦奈米管,使用XRD、NMR、XPS、TEM、TGA等儀器進行鑑定。將修飾後的二氧化鈦奈米管進一步製備成複合高分子電解質,由SEM表面型態觀察到相容性的提升,由離子導電度的分析也證實經修飾後,相較於僅只是摻合的方式,能有效提升導電度超過一個級數(order)。XPS及FT-IR的分析則指出鋰鹽在電解質系統中能有效的解離,減少離子對的情形。
    藉由AC-Impedance與DSC的研究,顯示在不同製備條件的複合高分子電解質中,不僅二氧化鈦奈米管能有效藉由短暫交聯結構的形成,使高分子重組作用降低、增加非結晶區塊,並延緩剩餘高分子結晶區塊的結晶速率;同時也發現發現,小分子量高分子的採用能有效提高離子導電度;適當的成膜溶劑選擇,除了能提供高介電常數促使鹽類解離外,還能利用奈米管的特殊表面微結構或是管徑中空的位置做溶劑儲存(retain)的功用,即使在高溫(90°C)也不會逸失;不同鋰鹽的使用,也能從導電度行為上觀察到二氧化鈦、高分子與鋰鹽之間的作用是否於一開始就已達平衡狀態,亦或需要做一高溫的熱催化,來促使三者間的作用或配對情形達平衡狀態;使用不同合成製備方式的二氧化鈦奈米管,也能觀察到由於其表面結構缺陷濃度的不同,而影響導電度及高分子熱性質的行為。最後,發現在複合交聯型高分子電解質的系統中,酚醛樹酯與高分子所形成相互貫穿的網狀區塊,能有效限制高分子的結晶行為,交聯劑的添加則大幅提昇的薄膜的機械穩定性,而二氧化鈦奈米管的使用,則避免了結構交聯過度所帶來導電度的大幅衰退。


    Organic-inorganic nano-composite bring lots of improvements in electric and thermal properties, such as excellent mechanical stability, higher ionic conductivity and wide electrochemical stability, and also provide better interface stability with electrode.
    This research focus on the preparation of TiO2 nano-tube and surface modification of TiO2 nano-tube with polymer which can be characterized by using XRD, NMR, XPS, TEM and TGA etc. Composite polymer electrolyte made by surface modified TiO2 nano-tube exhibit better compatibility from SEM surface morphology observation and an increase in ionic conductivity more than one order than that of blending ones. XPS and FT-IR also indicated polymer electrolyte containing TiO2 nano-tube can efficaciously dissociate the lithium salt and decrease the ion-pairing occurring.
    Composite polymer electrolyte made with a number of variable components were systematically study to find their impact upon the electrochemical properties of the resulting materials. TiO2 nano-tube surface group can act as a cross-linking center for the polymer segments, which reduced the polymer reorganization, increased amorphous domain and delay the rate of recrystallization. It’s generally observed the lower molecular weight samples yielded the higher ionic conductivity. A proper choice of solvent will not only increase the order of salt dissociation but also can be stored in TiO2 tubular microstructure. Conductivity behavior suggested specific salt will re-distribute between TiO2 nano-tube and polymer chain to reach equilibrium state. TiO2 nano-tube with different `concentration of surface defect will be a critical factor affect the conductivity and thermal proper of polymer electrolyte.
    In the composite/cross-linking polymer electrolyte, the interpenetrating network structure between phenolic and polymer chain can be efficiently hindered polymer crystallization, the cross-linker promoted mechanical stability, and the using of TiO2 nano-tube avoid the dramatically fadedness of conductivity came from over cross-linking.

    中文摘要………………………………………………………….………I 英文摘要……………………………………………………………......III 謝誌……………………………………………………………………...V 目錄……………………………………………………………………..VI 表目錄…………………………………………………………….……. X 圖目錄…………………………………………………………......….. XII 第一章 緒論……………………………………………………….…1 1-1 前言……………………………………………………………….…1 1-2 鋰電池與鋰二次電池簡介……………………………………….…2 1-3 高分子電解質簡介………………………………………………….6 1-4 固態高分子電解質……………………………………………….…6 1-4-1 交聯高分子電解質(Cross-link Polymer Electrolyte)…....…7 1-4-2 共聚高分子電解質(Block-Copolymer Electrolyte)……..…8 1-4-3 接枝高分子電解質(Graft/Comb Polymer Electrolyte)….…8 1-4-4 混摻高分子電解質(Blend Polymer Electrolyte)…………9 1-4-5 複合高分子電解質(Composite Polymer Electrolyte)…....9 1-4-6 單離子高分子電解質(Single-ion Polymer Electrolyte)…..10 1-4-7 Polymer - in – Salt Polymer Electrolyte………………….….11 1-4-8 Ormolytes/Ormocer(Organically Modified CERamics)……11 1-5 膠態高分子電解質……………………………………………...…12 1-6 微孔型高分子電解質………………………………………...……14 1-7 溫度效應對高分子電解質導電度的影響………………...………16 1-8 研究動機與目的………………………………………………...…17 1-9 第一章參考文獻…………………………………………...………19 第二章 文獻回顧…………………………………………..………24 2-1 高分子電解質之發展………………………………………….…..24 2-2 奈米複合(nano-composite)高分子電解質發展…………….……27 2-3 二氧化鈦之發展…………………………………………...………30 2-3-1 二氧化鈦奈米管之製備……………………….…...………33 2-4 Novolac type酚醛樹酯…………………………………….……..37 2-4-1 酚醛樹酯的特性…................................................................37 2-4-2 Novolac type酚醛樹酯與聚氧化乙烯摻合之研究探討…38 2-5 交聯劑六甲烯基四胺的特性……………….…………...………...39 2-6 第二章參考文獻…………………………………………...………40 第三章 實驗及儀器原理……………………………………..……47 3-1 樣品製備………………………………………………………...…47 3-1-1 二氧化鈦奈米管之合成(TiO2 nano-tube)………...………47 3-1-2 修飾型二氧化鈦奈米管之複合高分子電解質……………47 3-1-3 混摻型二氧化鈦奈米管之複合高分子電解質……………48 3-1-4 不同製備條件之複合高分子電解質………………………49 3-1-5 三相複合高分子電解質……………………………………49 3-2 實驗藥品……………………………………………………...……50 3-3 實驗儀器設備………………………………………………...……52 3-4 分析儀器應用理論……………………………………………...…53 3-4-1 微差掃瞄熱卡計(DSC)……………………………………53 3-4-2 熱重分析儀(TGA)…………………………………..……..54 3-4-3 傅立葉式紅外線吸收光譜儀(FT-IR)……………….…….55 3-4-4 掃瞄式電子顯微鏡(SEM)………………………..………..56 3-4-5 交流阻抗分析儀(AC Impedance)…………………………57 3-4-6 電化學穩定度量測(LSV)……………………………...….68 3-4-7 電池組裝與充放電量測(charge / discharge capacity)……70 3-4-8 X光繞射儀(XRD)………………………………….…….71 3-4-9 氮氣等溫吸附/脫附儀(ASAP)………………………..……72 3-4-10 核磁共振儀(Solid-state NMR)……………………………75 3-4-11 射線光電子能譜儀(XPS)…………………………..…….77 第四章 結果與討論…………………………………………...……79 4-1 二氧化鈦奈米管結構分析…………………………………...……81 4-1-1 X光繞射結構分析(XRD)………………………..………81 4-1-2 氮氣等溫吸附/脫附測量(ASAP)………………………83 4-1-3 熱重損失分析(TGA)……………………………………85 4-1-4 傅立葉紅外線(FT-IR)光譜分析………………………..87 4-1-5 穿透式電子顯微鏡分析(TEM)………………….……..88 4-1-6 掃瞄式電子顯微鏡分析(SEM)…………………..……..90 4-1-7 1H固態核磁共振儀分析(solid-state NMR)……………92 4-1-8 X光射線光電子光譜分析(XPS)……………………….94 4-2 二氧化鈦奈米管之修飾及其複合高分子電解質探討……...……99 4-2-1 掃瞄式電子顯微鏡分析(SEM)……………………….100 4-2-2 熱重損失分析(TGA)……….…………………….……102 4-2-3 傅立葉紅外線光譜分析(FT-IR)…………………….…105 4-2-4 X光繞射結構分析(XRD)……………………….……108 4-2-5 X光射線光電子光譜分析(XPS)……………………..110 4-2-6 13C固態核磁共振儀分析(solid-state NMR)…………..114 4-2-7 微分掃瞄熱卡計分析(DSC)……………………………117 4-2-8 X光繞射光譜在高分子電解質之分析(XRD)………..120 4-2-9 傅立葉紅外線光譜在高分子電解質之分析(FT-IR)…122 4-2-10 X光射線光電子光譜在高分子電解質分析(XPS)…128 4-2-11 交流阻抗儀在高分子電解質之分析(AC-Impedance)..132 4-3 不同製備條件對複合高分子電解質之影響與探討………….…139 4-3-1 微分掃瞄熱卡計分析(DSC)……………………………140 4-3-2 交流阻抗儀之分析(AC-Impedance)………………..…146 4-4 三相複合高分子電解質……………………………………...…..152 4-4-1 微分掃瞄熱卡計分析(DSC)……………………………153 4-4-2 交流阻抗儀在高分子電解質之分析(AC-Impedance).....159 4-5 第四章參考文獻…………………………………………...……..164 第五章 結論與未來展望………………………………………..167

    第一章參考文獻
    1. 孫清華, 最新可充電電池技術大全, 90年6月
    2. S.Yoda and K. Ishihara, J. Power Sources, 1999, 81/82, 162
    3. 薛立人, 二次電池之回顧與展望, 工業材料, 1999, 146, 70
    4. E. Peled, J. Electrochem. Soc., 1979, 126, 2047
    5. E.Peled; D. Golodnitsky; G. Ardel and V. Eshkenazy, Electrochim. Acta, 1995, 40, 2197
    6. E.Peled; D. Golodnitsky and G. Ardel, J. Electrochem. Soc., 1997, 144, L208
    7. E.Peled; D. Golodnitsky and J. Penciner, The anode/electrolyte interface, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.419-456, Wiley-VCH, Weinheim, Germany, 1999
    8. Y. Ein-Eli, Electrochem. Solid-State Lett., 1999, 2, 212
    9. B. Scrosati, J. Electrochem. Soc., 1992, 139, 2776
    10. Selim, R. and Bro, P., J. Electrochem. Soc., 1974, 121, 1457
    11. Raul, R. D.; Brummer, S. B., Electrochim. Acta, 1977, 22, 75
    12. Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski, S.;Carmeli, Y.; Yamin, H., J. Electrochem. Soc., 1995, 142, 2882
    13. Ein-Eli, Y.; Markovsky, B.; Aurbach, D.; Carmeli, Y.; Yamin, H.; Luski, S., Electrochim. Acta, 1994, 39, 2559
    14. Chusid, O.; Ein Ely, Y.; Aurbach, D.; Babai, M.; Carmeli, Y., J. Power Sources, 1993, 43/44, 47
    15. Aurbach, D.; Ein-Eli, Y.; Chusid, O.; Carmeli, Y.; Babai, M.; Yamin, H., J. Electrochem. Soc., 1994, 141, 603
    16. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212
    17. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W., J. Power Sources, 1993, 54, 228
    18. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1996, 143, L195
    19. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1997, 144, 1159
    20. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993, 140, 922
    21. Wilkinson, D.; Dahn, J. R. U.S. Patent 5, 130, 211, 1992
    22. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993, 140, L101
    23. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993, 140, 922
    24. Wang, C.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H., J. Power Sources, 1998, 74, 142
    25. Simon, B.; Boeuve, J. P. U.S. Patent 5, 626, 981, 1997
    26. Barker, J.; Gao, F. U.S. Patent 5, 712, 059, 1998
    27. Naruse, Y.; Fujita, S.; Omaru, A. U.S. Patent 5, 714, 281, 1998
    28. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., Electrochim. Acta, 2002, 47, 1423
    29. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., J. Electrochem. Soc., 1999, 146, 470
    30. Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D., Electrochim. Acta, 2000, 45, 1893
    31. Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue, K., J. Power Sources, 2003, 119/121, 373
    32. Blomgren, G. E., J. Power Sources, 2003, 119/121, 326
    33. Proceedings of 2004 Taipei International Power Forum, The Solid Electrolyte Interface(SEI)in Lithium Batteries:Understanding and Misunderstanding, 2004, B-5
    34. Xu, K, Chem. Rev., 2004, 104, 4303
    35. Meyer W. H., Adv. Mater., 1998, 10, 439
    36. Tonge, J. S.; Shriver, D. F., J, Electrochem. Soc., 1987, 134, 269
    37. Fauvarque, J. F., Electrochimica Acta, 2000, 40(13-14), 2295
    38. Gozdz, A.S.; Tarascon, J.M.; Warren, P.C.; Schmutz, C.N., Shokoohi, F.K., Proceedings of the Fifth International Symposium on Polymer Electrolyte, Uppsala, Sweden, 11-16 August, 1996, Paper0-12
    39. Shriver, D. F., Macromolecules, 1986, 19, 1508
    40. Shibata, M., Kobayash, T., European Polymer Journal, 2000, 36, 485
    41. Fujinami, T.; Tokimune, A.; Mehta, M. A.; Shriver, D. F.; Rawsky, G. C., Chem. Mater. 1997, 9, 2236
    42. Mandal, B. K.; Walsh, C. J.; Sooksimuang, T.; Behroozi, S. J., Chem. Mater. 2000, 12, 6
    43. Angell, C. A.; Liu, C.; Sanzhez, E., Naure, 1993, 362(6416), 137
    44. deAzevedo, E. R. ; Reichert, D.; Vidoto, E. L. G.; Dahmouche, K.; Judeinstein, P., Chem. Mater., 2003, 15, 2070
    45. Judeinstein, P.; Brik, M. E.; Bayle, J. P.; Courtieu, J.; Rault, J., Mater. Res. Soc. Symp. Proc., 1994, 346, 937
    46. Brik, M. E.; Titman, J. J.; Bayle, J. P.; Judeinstein, P., J. Polym.Sci., Part B: Polym. Phys., 1996, 34, 2533
    47. Lesot, P.; Chapuis, S.; Bayle, J. P.; Rault, J.; Lafontaine, E.; Campero, A.; Judeinstein, P., J. Mater. Chem., 1998, 8, 147
    48. Feullade, G. P.J. Perche, Appl. Electrochem., 1975, 63, 5
    49. Kim, Y. T.; Smotkin, E. S., Solid State Ionics, 2002, 149, 29
    50. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T., J. Mater. Sci., 1987, 22, 1845
    51. Watanabe, M.; Kanba, M.; Matsuda, H.; Mizoguchi, K.; Shinohara, I.; Tsuchida, E., Chem.-Rapid. Commun., 1981, 2, 741
    52. Gozdz,A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5, 418, 091, 1995
    53. Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5, 296, 318, 1994
    54.Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M.; Warren, P. C. U.S. Patent 5, 418, 091, 1995
    55. Gozdz, A. S.; Schmutz, C. N.; Warren, P. C. U.S. Patent 5, 460, 904, 1995
    56. Sekhon, S. S.; Singh, H. P., Solid State Ionics, 2002, 152-153, 169
    57. Teeter, D.; Stephan, A. M., Electrochimica Acta, 2003, 48, 2143
    58. Kim, D. W.; Sun, Y. K., J. Power Sources, 2001, 102, 41
    59. Michot, T.; Nishimoto, A.; Watanabe, M., Electrochaimica Acta, 2000, 45, 1347
    60. Boudin, F.; Andrieu X.; Jehoulet, C., J. Power Sources, 1999, 81/82, 804
    61. Murata, K.; Izuchi, S.; Yoshihisa Y., Electrochimica Acta, 2000, 45, 1501
    62. M. B. Armand, J. M. Chabagno, M. J. Duclot, “ Fast Ion Transport in Solids “, P. Vashishta, J. N. Mundy, and G. K. Shenoy, Editors, p131, NorthHolland, NewYork, 1979
    第二章參考文獻
    1. Fenton, D. E.; Parker, J. M.; Wright, P. V., Polymer, 1973, 14, 589.
    2. Wright, P. V., Polymer, 1975, 7, 319
    3. Armand, M. B.; J. M. Chabagno, M. J. Duclot, Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, September 20-22 (1978).
    4. Weston, J. E.; Steele, B. C. H., Solid State Ionics, 1981, 2, 347
    5. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P., Solid State Ionics, 1983, 11, 91
    6. Shriver, D. F.; Ratner, M. A.; Chem. Rev., 1988, 88, 109
    7. Bruce, P. G., Electrochimica Acta, 1995, 40(13-14), 2077
    8. Christie, A. M.; Lisowska, O. A.; Vincent, C. A., Electrochimica Acta, 1995, 40(13-14), 2405
    9. Christie, L.; Los, P.; Bruce, P. G., Electrochimica Acta, 1995, 40(13-14), 2159
    10. Le Granvalet-Mancini, M.; Hanrath, T.; Teeters, D., Solid State Ionics, 2000, 135(1-4), 283
    11. Borghini, M. C.; Mastragostino, M.; Zanelli, A., Journal of Power Sources, 1997, 68(1), 52
    12. Benrabah, D.; Sanchez, J. Y.; Armand, M., Solid State Ionics, 1993, 60, 87
    13. Benrabah, D.; Sanchez, J. Y.; Deroo, D.; Armand, M., Solid State Ionics, 1994, 70/71, 157
    14. Kao, H. M.; Tsai, Y. Y.; Chao, S. W., Solid State Ionics, 2005, 176(13-14), 1261
    15. Rajendran, S.; Mahendran, O.; Kannan, R., Journal of Physics and Chemistry of Solids, 2002, 63(2), 303
    16. Itoh, T.; Horii, S.; Uno, T.; Kubo, M.; Yamamoto, O., Electrochimica Acta, 2004, 50(2-3), 271
    17. Ramesh, S.; Arof, A.K., Materials Science and Engineering: B, 2001, 85(1), 11
    18. Wang, Q.; Gao, J.; Qian, Y., European Polymer Journal, 1996, 32(3), 299
    19. Aldissi, M., Journal of Power Sources, 2001, 94(2), 219
    20. Morales, E.; Acosta, J. L., Solid State Ionics, 1998, 111(1-2), 109
    21. Park, C. H.; Kim, D. W.; Prakash, J.; Sun, Y. K., Solid State Ionics, 2003, 159(1-2), 111
    22. Forsyth, M.; Meakin, P. M.; MacFarlane, D. R., Electrochimica Acta, 1995, 40(13-14), 2339
    23. Rajendran, S.; Sivakumar, M.; Subadevi, R., Materials Letters, 2004, 58(5), 641
    24. Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S., Materials Chemistry and Physics, 2002, 74(1), 98
    25. Edelmann, K.; Sandner, B., Solid State Ionics, 2004, 170(3-4), 225
    26. Pradhan, D. K.; Samantaray, B. K.; Choudhary, R. N. P.; Thakur, A. K., Journal of Power Sources, 2005, 139(1-2), 384
    27. Yang , X. Q.; Lee, H. S.; Hanson, L.; McBreen, J.; Okamoto, Y., Journal of Power Sources, 1995, 54(2), 198
    28. Michael, M. S.; Jacob, M. M. E.; Prabaharan, S. R. S.; Radhakrishna, S., Solid State Ionics, 1997, 98(3-4), 167
    29. 洪傳獻, chemistry, 1999, 57, 175
    30. Weston, J.; Steel, B.C.H., Solid State Ionics, 1982, 7, 75
    31. Wieczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Stevens, J.R., J. Phys. Chem. B, 1998, 102, 352.
    32. Best, A.S.; Adebarhr, J.; Jacobsson, P.; MacFarlane, D.R.; Forsyth, M., Macromolecules, 2001, 34, 4549
    33. Croce F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B., J. Phys. Chem. B, 1999, 103, 10632
    34. Wierzovek, W.; Lipka, P.; Zukowska, G.; Wycislik, H., J. Phys. Chem. B, 1998, 102, 6968
    35. A.S. Best, A. Ferry, D.R. MacFarlane, M. Forsyth, Solid State Ionics, 1999, 126(3-4), 269
    36. Kumar, B.; Scanlon, L.G., Solid State Ionics,1999, 124(3-4), 239
    37. Shin, J. H.; Alessandrini, F.; Passerini, S., J. Electrochem. Soc., 2005, 152, A283.
    38. Li, X.; Zhao, Y.; Cheng, L.; Yan, M.; Zheng, X.; Gao, Z.; Jiang, Z., J. Solid State Electrochem., 2005, 9, 609.
    39. Ahn, J. H.; Wang, G. X.; Liu, H. K.; Dou, S. X., J. Power Sources, 2003, 119-121, 422.
    40. Xi, J.; Tang, X, Electrochimica Acta, 2005, 50(27), 5293
    41. Reddy, M. J.; Chu, P. P., Journal of Power Sources, 2004, 135(1-2), 1
    42. Chu, P. P.; Reddy, M. J.; Kao, H. M., Solid State Ionics, 2003, 156(1-2),141
    43. Sun, H. Y.; Sohn, H. J.; Yamamoto, O.; Imanishi, N., J. Electrochem. Soc., 1999, 146, 1672
    44. Sun, H.Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O.; Sohn, H. J., J. Electrochem. Soc., 2000, 147, 2462
    45. Itoh, T.; Ichikawa, Y.; Uno, T.; Kubo, M.; Yamamoto, O., Solid State Ionics, 2003, 156, 393
    46. Liao, C. S.; Ye, W. B., Materials Chemistry and Physics, 2004, 88(1), 84
    47. Liao, C. S.; Ye, W. B., Electrochimica Acta, 2004, 49(27), 4993
    48. Liu, Y.; Lee, J. Y.; Hong, L., Journal of Power Sources, 2002, 109, 507
    49. 莊萬發, 超微粒子理論應用, 1998(民87)
    50. Croce, F.; Appetecchi, G. B.; Croce, F. Nature 1998, 394, 456
    51. Appetecchi, G. B.; Croce, F.; Persi, L.; Ronci, F.; Scrosati, B., Electrochimica Acta, 2000, 45(8-9), 1481
    52. Li, Q.; Sun, H. Y.; Takeda, Y.; Imanishi, N.; Yang, J.; Yamamoto, O., Journal of Power Sources, 2001, 94(2), 201
    53. Dissanayake, M.A.K.L.; Jayathilaka, P.A.R.D.; Bokalawala, R.S.P., Journal of Power Sources, 2003, 119–121, 409
    54. Adebahr, J.; Byrne, N.; Forsyth, M.; MacFarlane, D.R.; Jacobsson, P., Electrochimica Acta, 2003, 48(14-16), 2099
    55. Kumar, B., Journal of Power Sources, 2004, 135(1-2), 215
    56. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson J. W., J. Am. Chem. Soc., 1987, 109, 3639
    57. Bastow, T. J.; Whitfield, H. J., Chem. Mater., 1999, 11, 3518
    58. Gervais, C.; Smith, M. E.; Pottier, A.;Jolivet, J.-P.; Babonneau, F., Chem. Mater., 2001, 13, 462
    59. Won, W. S.; Seung, B. P.; Chae, H. S.; Sang, J. M., J. Mater. Sci., 2001, 36, 4299
    60. Robert, T. D.; Laude, L. D.; Geskin, V. M.; Lazzaroni, R.; Gouttebaron, R., Thin Solid Films, 2003, 440, 268
    61. Sodergren, S.; Siegbahn, H.; Rensmo, H.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S.-E., J. Phys. Chem. B, 1997, 101, 3087
    62. Wagemaker, M.; van de Krol, R.; Kentgens, A. P. M.; van Well, A. A.; Mulder, F. M., J. Am. Chem. Soc., 2001, 123, 11454
    63. Huang, S. Y.; Kavan, L.; Exnar, I., J. Electrochem. Soc., 1995, 142, L142
    64. Zhang, Z.; Gong, Z. L. ; Yang Y., J. Phys. Chem. B, 2004, 108, 17546
    65. Nosaka, A. Y.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., Langmuir, 2003, 19, 1935
    66. Nosaka, A. Y. ; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., J. Phys. Chem. B, 2004, 108, 9121
    67. Zhu, H.; Shen, M.; Wu, Y.; Li, X.; Hong, J.; Liu, B.; Wu, X. L.; Dong, L.; Chen, Y., J. Phys. Chem. B, 2005, 109, 11720
    68. 高濂、鄭珊、張清紅, 奈米光觸媒, 93年四月
    69. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Nano Lett., 2005, 5, 191
    70. Lee, S.; Jeon, C.; Park, Y., Chem. Mater., 2004, 16, 4292
    71. Xiong, C.; Balkus, K. J., Jr., Chem. Mater., 2005, 17, 5136
    72. Smarsly, B.; Grosso, D.; Brezesinski, T.; Pinna, N., Chem. Mater., 2004, 16, 2948
    73. Wu, C.-W.; Ohsuna, T.; Kuwabara, M.; Kuroda, K., J. Am. Chem. Soc., 2006, 128, 4544
    74. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Adv. Mater., 1999, 11, 1307
    75. Zhang, M; Jin, Z; Zhang, J.; Guo, X.; Yang, J.; Li, W.; Wang, X.; Zhang, Z., J. Mol. Catal. A: Chem., 2004, 217, 203
    76. Tsai, C.-C.; Teng, H., Chem. Mater., 2006, 18, 367
    77. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., Appl. Phys. Lett., 2003, 82, 281
    78. Lazzeri, M.; Vittadini, A.; Selloni, A., Phys. Rev. B, 2001, 63, 155409
    79. Oliver, P. M.; Watson, G. W.; Kelsey, E. T.; Parker S. C., J. Mater. Chem., 1997, 7, 563
    80. Knop, A.; Pilato, L. A. Springer-Verlag, Berlin. 1985
    81. Mottram, J. T.; Geary, B. and Taylor, R., J. Material Science, 1992, 27
    82. Meier, J. F.; JR, E. M. Bellott; Frank, P. P., Journal of Applied Polymer Science, 1977, 21
    83. Michot, T., Nishimoto, A., Watanabe, M., Electrochaimica Acta, 2000, 45(8-9), 1347
    84. Boudin, F. Andrieu, X., Jehoulet, C. J., J. Power Sources, 1999, 81/82, 804
    85. Li Jean and Khan, Ishrat, M., Macromolecules, 1993, 26, 4544
    86. MA, C.C.M.; Wu, H. D.; Lee, C-T., J. Polym. Sci, part B., 1998, 36, 1721
    87. Chu, P. P.; Wu, H. D.; Lee, C-T., J. Polym. Sci, part B., 1998, 36, 1647
    第四章參考文獻
    1. Zhang, M; Jin, Z; Zhang, J.; Guo, X.; Yang, J.; Li, W.; Wang, X.; Zhang, Z., J. Mol. Catal. A: Chem., 2004, 217, 203
    2. Sasaki, T.; Komatsu, Y.; Fujiki, Y., Chem. Mater., 1992, 4, 894
    3. Stephen Brunauer, Lola S. Deming, W. Edwards Deming, Edward Teller, J. Am. Chem. Soc., 1940, 62, 1723
    4. Nosaka, A. Y. ; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., J. Phys. Chem. B, 2004, 108, 9121
    5. Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K., Chemical Physics Letters, 2002, 365, 427
    6. Zhang, S.; Chen, Q.; Peng L.-M., Phys. Rev. B, 2005, 71, 014104
    7. Zhu, H.; Shen, M.; Wu, Y.; Li, X.; Hong, J.; Liu, B.; Wu, X. L.; Dong, L.; Chen, Y., J. Phys. Chem. B, 2005, 109, 11720
    8. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S., Langmuir, 2000, 17, 2664
    9. Kumar, P. M.; Badrinarayanan, S.; Sastry, M., Thin Solid Films, 2000, 358, 122
    10. Kumara, B.; Scanlonb, L. G., Solid State Ionics, 1999, 124, 239
    11. Forsyth, M.; MacFarlane, D.R.; Best, A.; Adebahr, J.; Jacobsson, P.; Hill A.J., Solid State Ionics, 2002, 147, 203
    12. Ni Y.; Zheng S., Chem. Mater., 2004, 16, 5141
    13. Liang, W.-J.; Chen, Y.-P.; Wu, C.-P.; Kuo, P.-L., J. Phys. Chem. B., 2005, 109, 24311
    14. C.D. Wagner; W.M. Riggs; L.E. Davis; J.F. Moulder and G.E. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, U.S.A., 1979
    15. Xi, J.; Tang, X, Electrochimica Acta, 2005, 50(27), 5293
    16. Wieczorek, W.; Florjanczyk, Z.; Stevens, J. R., Electrochimica Acta, 1995, 40, 2251
    17. Siekierski, M.; Przyluski, J.; Wieczorek, W., Electrochimica Acta, 1995, 40, 2101
    18. Chung, S.H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S.G.; Scrosati, B.; Plichta, E., J. Power Sources, 2001, 97-98, 644
    19. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R., J. Phys. Chem. B., 1999, 103, 10632
    20. Wieczorek, W.; Lipka, P.; Zukowska, G.; Wycislik, H., J. Phys. Chem. B., 1998, 102, 6968
    21. Wagemaker, M.; van de Krol, R.; Kentgens, A. P. M.; van Well, A. A.; Mulder, F. M., J. Am. Chem. Soc., 2001, 123, 11454
    22. Wagemaker, M.; Kearley, G. J.; van Well, A. A.; Mutka, H.; Mulder, F. M., J. Am. Chem. Soc., 2003, 125, 840
    23. Olson, C. L.; Nelson, J.; Islam, M. S., J. Phys. Chem. B., 2006, 110, 9995
    24. Gregg, B. A.; Chen, S. G.; Ferrere, S., J. Phys. Chem. B, 2003, 107, 3019
    25. Kopidakis, N.; Neale, N. R.; Zhu, K.; van de Lagemaat, J.; Frank, A., J. Appl. Phys. Lett., 2005, 87, 202106
    26. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M., J. Am. Chem. Soc., 2004, 126, 14943
    27. Bisquert, J.; Vikhrenko, V. S., J. Phys. Chem. B, 2004, 108, 2313
    28. Scrosati, B.; Croce, F.; Persi, L., J. Electrochem. Soc., 2000, 147(5), 1718
    29. Best, A. S.; Adebahr, J.; Jacobsson, P.; MacFarlane, D. R.; Forsyth, M., Macromolecules, 2001, 34, 4549
    30. Volel, M.; Armand, M.; Gorecki, W., Macromolecules, 2004, 37, 8373
    31. Rosen, S. L. , Fundamental Principles of Polymeric Materials 2nd edition, Wiley Interscience, 1993
    32. Gray, F. M., Polymer Electrolyte, The Royal Society of Chemistry, 1997
    33. Kim, Y. W.; Lee, W.; Choi, K., Electrochimica Acta, 2000, 45, 1473
    34. Cheung, I.W.; Chin, K.B.; Greene, E.R.; Smart, M.C.; Abbrent, S.; Greenbaum, S.G.; Prakash, G.K.S.; et. al., Electrochimica Acta, 2003, 48, 2149
    35. Florian Muller-Plathe; Wilfred F. van Gunsteren, Journal of Chemistry Physics, 1995, 103, 4745
    36. Wu, H.-D.; Chu, P. P.; Ma, C.-C. M.; Chang, F.-C., Macromolecules, 1999, 32, 3097
    37. 邱伯寧, 中央大學化學研究所碩士論文, 93年7月

    QR CODE
    :::