| 研究生: |
簡莉珠 Li-Chu Chien |
|---|---|
| 論文名稱: |
廣義線性模型架構下多個迴歸係數的有母數強韌推論法 Parametric Simultaneous Robust Inferences for Regression Coefficients in General Regression Problems under Generalized Linear Models |
| 指導教授: |
鄒宗山
Tsung-Shan Tsou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 外文關鍵詞: | ANCOVA, normal regression, gamma regression, inverse Gaussian regression, ANOVA, Generalized linear models |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this article, robust regression parameter inference in the setting of generalized linear models (GLMs) will be proposed. A parametric robust regression methodology that is robust to violations of the distributional assumptions is able to test hypotheses on the regression coefficients in the misspecified GLM setting. More specifically, it will be demonstrated that with large samples the ordinary normal, gamma and inverse Gaussian regression models can be made robust and provide consistent regression parameter estimates in the misspecified GLM setting. These adjusted regression models furnish the correct type I, II error probabilities, and also the correct coverage probability, for continuous data, as long as the true but unknown underlying distributions have finite second moments.
The parametric robust regression techniques are also applied to the analysis of variance (ANOVA) problems including the one-way, two-way ANOVA structures and the one-way analysis of covariance (ANCOVA) setup. In the ANOVA situations, these adjusted regression models continue to remain asymptotically valid representations of the particular parameters of interest, whatever distributions generate the data.
Birnbaum, A. (1962). On the Foundations of Statistical Inference (with Discussion). J. Amer. Statist. Assoc., 53, 259-326.
Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and Hall.
Drygas, H. (1976). Weak and Strong Consistency of the Least Squares Estimators in Regression Models. Z. Wahrsch. Verw. Gebiete, 34, 119-127.
Fahrmeir, L. and Kaufmann, H. (1985). Consistency and Asymptotic Normality of the Maximum Likelihood Estimator in Generalized Linear Models. The Annals of Statistics, 13, 342-368.
Fahrmeir, L. and Kaufmann, H. (1986). Asymptotic Inference in Discrete Response Models. Statistical Papers, 27, 179-205.
Fahrmeir, L. (1987). Asymptotic Testing Theory for Generalized Linear Models. Statistics, 18, 65-76.
Fahrmeir, L. (1990). Maximum Likelihood Estimation in Misspecified Generalized Linear Models. Statistics, 21, 487-502.
Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd ed. New York: Springer-Verlag.
Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo Maximum Likelihood Methods: Theory. Econometrica, 52, 681-700.
Hall, A. R. and Inoue, A. (2003). The Large Sample Behavior of the Generalized Method of Moments Estimator in Misspecified Models. Journal of Econometrics, 114, 361-394.
Heagerty, P. J. and Kurland, B. F. (2001). Misspecified Maximum Likelihood Estimates and Generalised Linear Mixed Models. Biometrika, 88, 973-985.
Helsel, D. R. (1983). Mine Drainage and Rock Type Influences on Eastern Ohio Street Water Quality. Water Resources Bulletin, 19, 881-887.
Heyde, C. C. (1997). Quasi-Likelihood and Its Application. New York: Springer-Verlag.
Huber, P. J. (1967). The Behavior of Maximum Likelihood Estimates under Nonstandard Conditions. Proc. Fifth Berkeley Symp. Math. Statist. Probab., 1, 221-233. Univ. California Press, Berkeley.
Huber, P. J. (1981). Robust Statistics. New York: John Wiley.
Kaufmann, H. (1988a). On Existence and Uniqueness of a Vector Minimizing a Convex Function. ZOR, 32, 357-373.
Kaufmann, H. (1988b). On Existence and Uniqueness of Maximum Likelihood Estimates in Quantal and Ordinal Response Models. Metrika, 35, 291-313.
Kent, T. J. (1982). Robust Properties of Likelihood Ratio Tests. Biometrika, 69, 19-27.
Lai, T. L., Robbins, H. and Wei, C. Z. (1979). Strong Consistency of Least Squares Estimates in Multiple Regression II. J. Multivariate Anal., 9, 343-361.
Lehmann, E. L. (1983). Theory of Point Estimation. New York: Springer-Verlag.
Lehmann, E. L. (1999). Elements of Large-Sample Theory. New York: Springer-Verlag.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London, New York: Academic Press.
McCullagh, P. (1983). Quasi-Likelihood Functions. Annals of Statistics, 11, 59-67.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. New York: Chapman and Hall.
Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized Linear Models. JRSS-A, 135, 370-384.
Rao, C. R. and Toutenburg, H. (1999). Linear Models – Least Squares and Alternatives. 2nd ed. New York: Springer-Verlag.
Rawlings, J. O., Pantula, S. G. and Dickey, D. A. (1998). Applied Regression Analysis – A Research Tool. 2nd ed. Now York: Springer-Verlag.
Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical Statistics. New York: John Wiley.
Royall, R. M. (1997). Statistical Evidence – A Likelihood Paradigm. London: Chapman and Hall.
Royall, R. M. (2000). On the Probability of Observing Misleading Statistical Evidence (with Discussion). J. Amer. Statist. Assoc., 95, 760-780.
Royall, R. M. and Tsou, T.-S. (2003). Interpreting Statistical Evidence Using Imperfect Models: Robust Adjusted Likelihood Functions. JRSS-B, 65, 391-404.
Stafford, J. E. (1996). A Robust Adjustment of the Profile Likelihood. The Annals of Statistics, 24, 336-352.
Tsou, T.-S. (2003). Comparing Two Population Means and Variances – A Parametric Robust Way. Comm. Stat. – Theor. Meth., 32, 2013-2019.
Tsou, T.-S. and Cheng, K.-F. (2004). Parametric Robust Regression Analysis of Contaminated Data. Comm. Stat. – Theor. Meth., 33, 1887-1898.
Tsou, T.-S. (2004). Parametric Robust Inferences for Regression Parameters under Generalized Linear Models. (submitted)
Tsou, T.-S. (2005). Robust Poisson Regression. J. Statist. Plan. Infer. (to appear)
Wedderburn, R. W. M. (1974). Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method. Biometrika, 61, 439-447.
Wedderburn, R. W. M. (1976). On the Existence and Uniqueness of the Maximum Likelihood Estimates for Certain Generalized Linear Models. Biometrika, 63, 27-32.
White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica, 50, 1-25.
White, H. and Domowitz, I. (1984). Nonlinear Regression with Dependent Observations. Econometrica, 52, 143-161.
White, H. (1984). Maximum Likelihood Estimation of Misspecified Dynamic Models. In: Dijlestra, T. (Ed.), Misspecification Analysis. Berlin: Springer-Verlag.