跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡玉章
Yu-Chang Tsai
論文名稱: 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
Design of Low Jitter Self-Calibration PLL for 10Gbps SoC Transmission Links Application
指導教授: 鄭國興
Kuo-Hsing Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 多頻帶電壓控制振盪器鎖相迴路自我校準低抖動
外文關鍵詞: low jitter, Multi-Band VCO, Self-Calibration, PLL
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在最近幾年由於網路和電腦運算速度的快速發展下,電子業興起了一股朝向資料傳輸和高速串列資料通訊研究的潮流。從PCI 1.0演進至目前的PCI- Express,正說明了在高資料量傳輸時的傳統平行介面技術逐漸變成由串列傳輸的介面技術所取代。在本論文中實現了一個低抖動的自我校準鎖相迴路並應用於10Gbps晶片系統傳輸鏈,此鎖相迴路用來提供時脈訊號給serializer、deserializer等電路,來做為晶片內部時脈同步的訊號。
    本論文提出之低抖動自我校準鎖相迴路可以產生2.5GHz八個相位的輸出頻率,並且提供給整個系統所需的時脈訊號,且此鎖相迴路使用自我校準的機制,因此鎖相迴路可以在製程、電壓或溫度的飄移下都鎖定在2.5GHz的頻率,並且使用多頻帶的電壓控制振盪器來降低其KVCO,因此也降低雜訊對電壓控制振盪器的影響。本晶片以TSMC 0.13um 1P8M CMOS製程來實現,工作電壓為1.2V且當鎖相迴路的輸出頻率為2.5GHz時,其功率消耗為21mW。當此提出的鎖相迴路輸入時脈訊號抖動為20ps(p-p)時,其輸出最大時脈抖動為18.55ps(p-p)。當晶片包含I/O pad時,晶片總面積為0.7mm^2,而核心部分的面積為0.08mm^2。


    Under the development of the network and computer operated speed in recent years, a trend of data transmission and studying at high-speed serial communication is growing. It is pointed out that the high-speed serial link interface is replacing gradually the conventional parallel bus interface in the large data transmission by the development of PCI bus from PCI 1.0 PCI-Express. The thesis is implemented a low jitter Self-Calibration PLL for 10Gbps SoC transmission links application. The PLL provides clock signal for serializer and deserializer. It provides synchronous clock for the 10Gbps SoC transmission links.
    The thesis proposed Self-Calibration PLL generates 2.5GHz 8-phase output frequency. It provides the clock signal for the system. The PLL use Self-Calibration technique thus it can lock at 2.5GHz output frequency for process, voltage and temperature variations. And it use Multi-Band VCO to degrade the KVCO. So it degrades the noise effect of the VCO. The test chip is implemented in TSMC 0.13um 1P8M CMOS technology. It works at power supply 1.2V with 21mW power consumption, and the PLL output frequency is 2.5GHz. The maximum output jitter is 18.55ps(p-p) with input clock jitter 20ps(p-p) of the proposed PLL. The total chip area is 0.7mm^2 with I/O pads, and the core area is 0.08mm^2.

    摘要 i 致謝 v 目錄 vii 圖目錄 ix 表目錄 xiii 第1章 緒論 1 1.1 動機 1 1.2 10Gbps晶片系統內傳輸鏈的簡介 2 1.3 論文組織 6 第2章 鎖相迴路之基本觀念 7 2.1 鎖相迴路的組成元件與操作原理 7 2.1.1 相位頻率偵測器 (PFD) 8 2.1.2 充放電幫浦 (CP) 12 2.1.3 迴路濾波器 (LPF) 12 2.1.4 電壓控制振盪器 (VCO) 13 2.1.5 除頻器 (FD) 14 2.2 鎖相迴路的迴路分析 15 2.3 各種多頻帶電壓控制振盪器的例子 21 2.3.1 LC-VCO + MOS 電容的多頻帶電壓控制振盪器 22 2.3.2 Ring-VCO + MOS電容的多頻帶電壓控制振盪器 23 2.3.3 Ring-VCO + Resistor load 24 2.3.4 Ring-VCO + DAC 25 2.3.5 各種多頻帶電壓控制振盪器的比較 25 2.4 各種自我校準鎖相迴路的例子 26 2.4.1 利用頻率偵測器加上狀態機的自我校準機制 26 2.4.2 利用比較器加上計數器做為自我校準的機制 27 2.4.3 利用快速自我校準的機制 28 2.4.4 利用頻率鎖住偵測器的自我校準機制 29 2.4.5 利用充放電幫浦加上比較器來做為自我校準的機制 31 2.4.6 利用Jitter measurement circuit的自我校準機制 33 2.4.7 各種自我校準機制的比較 35 第3章 多頻帶的自我校準鎖相迴路 37 3.1 2.5GHz的低抖動鎖相迴路設計考量 37 3.2 鎖相迴路的輸出抖動分析 39 3.3 多頻帶電壓控制振盪器的頻帶重疊區域分析 40 3.4 2.5GHz多頻帶自我校準鎖相迴路的設計 44 3.4.1 多頻帶電壓控制振盪器的設計 44 3.4.2 自我校準電路的設計 45 3.4.3 自我校準鎖相迴路的原理 46 第4章 鎖相迴路的設計與製作 49 4.1 多頻帶自我校準鎖相迴路的各個組成元件 49 4.1.1 相位頻率偵測器 (PFD) 49 4.1.2 充放電幫浦 (CP) 53 4.1.3 迴路濾波器 (LPF) 54 4.1.4 電壓控制振盪器 (VCO) 55 4.1.5 除頻器 (FD) 59 4.1.6 自我校準機制 (Self-Calibration Circuit) 60 4.2 多頻帶自我校準鎖相迴路的模擬結果 68 第5章 鎖相迴路的佈局與量測 73 5.1 鎖相迴路之電路佈局 73 5.2 鎖相迴路之晶片測試 74 第6章 結論 81 6.1 結論 81 參考文獻 83

    [1] “An Analysis and Performance Evaluation of a Passive Filter Design Techniques for Charge Pump PLL’s,” National Semiconductor application note, July 2001.
    [2] S. Kim, et al., “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE J. Solid-State Circuit, pp. 691-700, 1997.
    [3] B. Razavi, “Design of Analog CMOS Integrated Circuit,” New York: McGraw-Hill, 2001.
    [4] T.H. Lin, and Y.J. Lai, “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL,” IEEE J. Solid-State Circuit, pp. 340-349, 2007.
    [5] T.H. Lin, and Y.J. Lai, “Time-based frequency band selection method for phase-locked loops,” IEEE Electronics Letters, pp. 1279-1281, 2005.
    [6] T.H. Lin, and Y.J. Lai, “A 10-GHz CMOS PLL with an Agile VCO Calibration,” IEEE Asian Solid-State Circuits Conference, pp. 213-216, 2005.
    [7] H.I. Lee, et al., “A Σ-Δ Fractional-N Frequency Synthesizer Using a Wide-Band Integrated VCO and a Fast AFC Technique for GSM/ GPRS/ WCDMA Applications,” IEEE J. Solid-State Circuit, pp. 1164-1169, 2004.
    [8] T.H. Lin, and W.J. Kaiser, “A 900-MHz 2.5-mA CMOS Frequency Synthesizer with an Automatic SC Tuning Loop,” IEEE J. Solid-State Circuit, pp. 424-431, 2001.
    [9] A. Ravi, et al., “10 GHz, 20mW, fast locking, adaptive gain PLLs with on-chip frequency calibration for agile frequency synthesis in a .18um digital CMOS process,” IEEE Symposium on VLSl Circuits, pp. 181-184, 2003.
    [10] H.R. Lee, et al., “A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface With Robust VCO Tuning Technique,” IEEE J. Solid-State Circuit, pp. 2148-2158, 2005.
    [11] R. Nonis, et al., “Modeling, Design and Characterization of a New Low-Jitter Analog Dual Tuning LC-VCO PLL Architecture,” IEEE J. Solid-State Circuit, pp. 1303-1309, 2005.
    [12] S.M. Paletmo, and J.P. de Gyve, “A multi-band single-loop PLL frequency synthesizer with dynamically-controlled switched tuning VCO,” IEEE Midwest Symposium on Circuits and Systems, pp. 818-821, 2000.
    [13] R.J. Yang, et al., “A 155.52 Mbps–3.125 Gbps Continuous-Rate Clock and Data Recovery Circuit,” IEEE J. Solid-State Circuit, pp. 1380-1390, 2006.
    [14] L. Sun and D. Nelson, ” A 1V GHz Range 0.13um CMOS Frequency Synthesizer,” IEEE Custom Integrated Circuits Conference, pp. 327-330, 2001.
    [15] W.B. Wilson, et al., “A CMOS Self-Calibrating Frequency Synthesizer,” IEEE J. Solid-State Circuit, pp. 1437-1444, 2000.
    [16] J. Nakanishi, et al., “A Wide Lock-in Range PLL using Self-Calibrating Technique for Processors,” IEEE Asian Solid-State Circuits Conference, pp. 285-288, 2005.
    [17] T.W. Ahn, C.G. Yoon, and Y. Moon, “An adaptive frequency calibration technique for fast locking wideband frequency synthesizers,” IEEE Midwest Symposium on Circuits and Systems, pp. 1899-1902, 2005.
    [18] K.S. Lee, E.Y. Sung, I.C. Hwang, and B.H Park, “Fast AFC technique using a code estimation and binary search algorithm for wideband frequency synthesis,” IEEE European Solid-State Circuits Conference, pp. 181-184, 2005.
    [19] S. Ali, and M. Margala, “A 2.4-GHz Auto-calibration Frequency Synthesizer with on-chip Built-In-Self-Test Solution,” IEEE International Symposium on Circuits and Systems, pp. 4651-4654, 2006.
    [20] S. Ali, G. Briggs, and M. Margala, “A High Frequency, Low Jitter Auto-Calibration Phase-Locked Loop with Built-in-Self-Test,” IEEE International Symposium on Defect and Fault Tolerance, pp. 591-599, 2005.
    [21] J.G. Maneatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques,” IEEE J. Solid-State Circuit, vol. 31, no. 11, pp.1723-1732, Nov. 1996.
    [22] P. Heydari, “Analysis of the PLL Jitter Due to Power/Ground and Substrate Noise,” IEEE Transactions on Circuits and System I, vol. 51, no. 12, pp.2404- 2416, Dec. 2004.
    [23] S.M. Paletmo, and J.P. de Gyve, “A multi-band single-loop PLL frequency synthesizer with dynamically-controlled switched tuning VCO,” IEEE Midwest Symposium on Circuits and Systems, pp. 818-821, 2000.
    [24] K. Minami, et. al., ”A 0.10μm CMOS, 1.2V, 2GHz Phase-Locked Loop with Gain Compensation VCO,” IEEE CICC, pp. 213-216, 2001.
    [25] G.C.T. Leung, and H.C. Luong, “A l-V 13-mW 2.5-GHz Double-Rate Phase-Locked Loop with Phase Alignment for Zero Delay” IEEE ESSCIRC, pp. 109-112, 2003.
    [26] A. Maxim, “A 0.16–2.55-GHz CMOS Active Clock Deskewing PLL Using Analog Phase Interpolation,” IEEE J. Solid-State Circuit, pp. 110-130, 2005.
    [27] T. Toifl, et. al., “A 0.94-ps-RMS-Jitter 0.016-mm2 2.5-GHz Multiphase Generator PLL with 360 Digitally Programmable Phase Shift for 10-Gb/s Serial Links,” IEEE J. Solid-State Circuit, pp. 2700-2712, 2005.
    [28] J. F. Parker, D. Weinlader, and J. L. Sonntag, “A 15mW 3.125GHz PLL for Serial Backplane Transceivers in 0.13um CMOS,” IEEE ISSCC Dig. Tech. Paper, pp. 412-414, Feb., 2005
    [29] M. Brownlee, P.K. Hanumolu, K. Mayaram, and U.K. Moon, “A 0.5-GHz to 2.5-GHz PLL With Fully Differential Supply Regulated Tuning,” IEEE J. Solid-State Circuit, pp. 2720-2728, 2006.
    [30] A.M. Fahim, “A compact, low-power low-jitter digital PLL” IEEE European Solid-State Circuits Conference, pp. 101-104, 2003.
    [31] T. Wu, K. Mayaram, and U.K. Moon, “An On-chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators,” IEEE J. Solid-State Circuit, pp. 775-783, 2007.

    QR CODE
    :::