跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許翔崴
Hsiang-Wei Hsu
論文名稱: 以奈米黑色素螯合有毒金屬離子之物理研 究與應用開發
Physics and application of the chelation of toxic metal ions by nano-melanin
指導教授: 陳賜原
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 36
中文關鍵詞: 黑色素脈衝雷射自由基螯合劑活性氧DMSAATP
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黑色素是人體內最普遍的生物聚合物之一,過去的研究顯示黑色素具有對抗自由基、活性含氧分子、腫瘤、蛇毒、病毒和重金屬離子等醫學應用的潛 力,
    然而它在生物介質的不可溶解性大大的降低了它可能的療效。在先前的研 究裡,我們開發了用脈衝雷射來進行光粉碎以及長時間攪拌等方式,來進行黑 色素在生物介質中的奈米化和可分散化。經由這樣的方式,黑色素暴露的表面 積增加了好幾個數量級,大幅提升了它的化學與生物作用的效率。作為一個示 範,我們先前已經探究了奈米化黑色素對抗活性含氧分子而保護細胞的應用。 在這篇論文裡,我們將展現使用此奈米化黑色素作為對抗毒性金屬離子的螯合 劑的潛力。
    本論文研究了使用奈米化黑色素來做為新型螯合劑的可能性。我們使用感應耦合電漿放射光譜儀 ( ICP-OES)來確認奈米化黑色素的螯合能力,並通過流式細胞儀和 ATP 測量來表現細胞活性。結果表明奈米化黑色素不僅可以螯合金
    屬離子,更重要的是,它也可以使得受到鉛離子傷害的細胞進行修復。首先我
    們確認了本製程的奈米黑色素確實具有螯合重金屬的能力,然後將奈米黑色素
    進行細胞實驗,發現奈米黑色素可以治療已受金屬離子的傷害的細胞,但DMSA 不能,我們猜測奈米化黑色素可以進到細胞中使得細胞吐出已被細胞吞噬的鉛離子,並使得細胞的 ATP 產率上升,此結果表明,奈米化黑色素確實具有作為新型螯合劑的可能。


    Melanin is one of the most ubiquitous biological polymer widespread in our body tissue, and it has been shown that melanin has potential
    medical functions against free radicals, reactive oxygen species, tumor,
    venin, virus, and heavy metal ions. However, its insolubility drastically
    reduces its efficacy. We have shown previously that melanin can be
    broken down to become nanometer-sized and water-dispersible by
    pulsed-laser photo-fragmentation or by extended mechanical stir.
    Through this, the exposed surface area could be increased by many orders of magnitude, dramatically increasing the efficiency of chemical and biological interactions. As a demonstration, we have explored the
    efficacy of using the nanonized melanin in protecting cells from reactive
    oxygen species.In this master thesis , we will explore the utilization of the nanonized melanin as a chelation agent against toxic metal ions.
    In this paper, the possibility of using melanin nanoparticles as a new
    kind of chelation agent has been studied. The chelating ability was
    characterized by using Inductively Coupled Plasma Optical Emission
    Spectrometer ( ICP-OES). The cell viability activity were characterized by using flow cytometer and ATP measurement. Result shows the melanin nanoparticles not only can chelate metal ions, more importantly,
    but also can recovery cells from harm of Pb2+ ion. First, the chelation
    ability of melanin on Pb2+ was studied. Then nanolized melanin was been utilized to in-vitro experiment. it was found the melanin nanoparticles can cure cells from harm of metal ion, but DMSA can not. We hypothesize that the nanolized melanin could diffuse into the cells to spit out lead-ion which had been swallowed by cells, and increase cells ATP. This result indicates that the nanolized melanin did have the possibility of being a new chelating agent.

    中文摘要 ..................................................................................................... i 英文摘要 .................................................................................................... ii 誌謝 ........................................................................................................... iv 圖目錄 ...................................................................................................... vii 一、 緒論 .............................................................................................. 1 1.1. 重金屬的流行病學與病理學 ....................................................... 1 1.2. 螯合治療 ....................................................................................... 2 1.3. 黑色素 ........................................................................................... 3 1.4. 研究成果 ....................................................................................... 4 1.4.1. 本製程奈米黑色素確實可以螯合重金屬 ............................... 4 1.4.2. 奈米黑色素確實可以保護細胞不受重金屬傷害 ................... 4 二、 材料與方法 .................................................................................. 5 2.1. 奈米化黑色素的方法 ................................................................... 5 2.2. 感應耦合質譜分析儀 ( ICP-OES) .............................................. 6 2.2.1. 實驗步驟-無細胞實驗-奈米黑色素螯合能力 ........................ 7 2.3. 細胞培養 ....................................................................................... 7 2.4. 存活率量測 ................................................................................... 8 2.4.1. 實驗步驟-細胞試驗-鉛離子濃度對細胞的存活率影響 ........ 8 2.5. ATP 量測 ...................................................................................... 9 三、 結果與討論 ................................................................................ 11 3.1. 無細胞試驗 ................................................................................. 12 3.1.1. 奈米黑色素對 Pb2+的螯合能力 ............................................. 12 3.2. 體外細胞試驗 ............................................................................. 13 3.2.1. 鉛離子濃度對細胞的影響 ..................................................... 13 3.2.2. 奈米黑色素或 DMSA 與鉛離子對細胞的影響 ................... 15 四、 結論與未來展望 ........................................................................ 18 4.1. 結論 ............................................................................................. 18 4.2. 未來展望 ..................................................................................... 18 參 考 文 獻 ............................................................................................ 19

    [1] Tchounwou PB Yedjou CG Petlolla AK Sutton DJ. Heavy metals
    toxicity and the environment. NIH Public Access, 101:113–164, 2014.
    [2] Lowry JA. Oral chelation therapy for patients with lead poisoning.
    Am Acad Pediatr, 116: 1036-1046, 2010.
    [3] Pombeiro-Sponchiado SR Goncalves RDR. Antioxidant activity of
    the melanin pigment extracted from aspergillus nidulans. Biol Pharm
    Bull, 28(6):1129–1131, 2005.
    [4] Niwano Y Tada M, Kohno M. Scavenging or quenching effect
    of melanin on superoxide anion and singlet oxygen. J. Clin.
    Biochem. Nutr., 46(3):224–228, 2010.
    [5] Sichel G Brai M Palminteri MC, Sciuto S. Seasonal dependence
    of ESR feature of frog melanins. Comp. Comparative Biochemistry
    and Physiology Part B: Comparative Biochemistry, 70(3):611-613,
    1981.
    [6] Geremia E et al. Vanella A, Sichel, G. Eumelanins as free
    radicals trap and superoxide dismutase activities in Amphibia.
    Comparative Biochemistry and Physiology Part B: Comparative
    Biochemistry, 79(1): 67-69, 1984.
    [7] Sarna T Pilas B Land EJ, Truscott TG. Interaction of radicals
    from water radiolysis with melanin. Biochimica et Biophysica Acta
    22
    (BBA)-General Subjects, 883(1): 162-167, 1986.
    [8] Scalia M Geremia E Corsaro C Santoro C Baratta D, Sichel G.
    Lipid peroxidation in pigmented and unpigmented liver tissues:
    protective role of melanin. Pigment Cell Research, 3(2): 115-119,
    1990.
    [9] Burkhart CN Burkhart CG. The mole theory: primary function
    of melanocytes and melanin may be antimicrobial defense
    and immunomodulation (not solar protection). Int. J. Dermatol.,
    44(4):340–342, 2005.
    [10] Mackintosh JA. The antimicrobial properties of melanocytes,
    melanosomes and melanin and the evolution of black skin. J.
    Theor. Biol., 211(2):101–113, 2001.
    [11] Garger SJ Dousman L Grill LK Tus´ e D Mohagheghpour N,
    Waleh N. Synthetic melanin suppresses production of proinflammatory
    cytokines. Cell. Immunol., 199(1):25–36, 2000.
    [12] Michel M et al. Ball V, Frari DD. Deposition mechanism and
    properties of thin polydopamine films for high added value applications
    in surface science at the nanoscale. BioNanoSci., 2(1):16–
    34, 2012.
    [13] Irimia-Vladu M Mostert AB Schwenn PE Meredith P, Bettinger
    CJ. Electronic and optoelectronic materials and devices
    inspired by nature. Rep. Prog. Phys., (034501):1–36, 2013.
    [14] Sivakumar K Kim S-K Manivasagan P, Venkatesan J.
    Actinobacterial melanins: current status and perspective for the
    future. World J. Microbiol. Biotechnol., 29:1737–1750, 2013.
    [15] Gasyna EM Kobori Y Rezaei KA-Norris JR Jr. Seagle BL,
    Rezai KA. Time-resolved detection of melanin free radicals quenching
    reactive oxygen species. Journal of the American Chemical
    Society, 127(32):11220–11221, 2005.
    [16] Potts AM Au PC. The affinity of melanin for inorganic ions. Exp.
    Eye, 22(5): 487–491, 1976.
    [17] Lee J-K Kim DJ, Ju K-Y. The synthetic melanin nanoparticles
    having an excellent binding capacity of heavy metal ions. Bull. Korean
    Chem. Soc., 33(11): 3788–3792, 2012.
    [18] Chu P et al. Schweitzer AD, Revskaya E. Melanin-covered
    nanoparticles for protection of bone marrow during radiation therapy
    of cancer. Int. J. Radiat. Oncol. Biol. Phys., 78(5): 1494–1502, 2010.
    [19] Mikirova N Casciari J, Hunninghake R. Efficacy of oral DMSA
    and intravenous EDTA in chelation of toxic metals and improvement
    of the number of stem/progenitor cells in circulation. Translational
    Biomedicine, 2(2), 2011.

    QR CODE
    :::