| 研究生: |
陳奕勳 Yi-Hsun Chen |
|---|---|
| 論文名稱: |
嗜酸熱硫化葉菌酮醇酸還原異構酶與輔酶共晶體結構及活性分析 Cofactor bi-specificity in Sulfolobus acidocaldarius Ketol-Acid Reductoisomerase as revealed by two crystal structures and enzyme activity assays |
| 指導教授: |
陳青諭
Chin-Yu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 嗜酸熱硫化葉菌 、酮醇酸還原異構酶 、蛋白質結晶學 、輔酶雙特異性 |
| 外文關鍵詞: | Sulfolobus acidocaldarius, Ketol-acid reductoisomerase, X-ray crystallography, Cofactor bi-specificity |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
酮醇酸還原異構酶(KARI) 是支鏈胺基酸(BCAA) 生物合成途徑中的第二個酵素,
為雙功能酶可進行兩步驟的催化反應。第一步進行鎂離子專一性的異構反應,隨後為輔
酶NAD(P)H 與鎂離子或其他二價金屬離子(錳離子或鈷離子) 依賴性的還原反應。在
先前研究結果,已得知嗜酸熱硫化葉菌的KARI (Sac-KARI) 具有熱穩定性與輔酶雙專
一性,可以利用NADPH 與NADH 兩種輔酶進行催化反應,且相對偏好於NADPH 。
在本次研究中,我們利用X-ray 蛋白質晶體繞射,解析出Sac-KARI-NADPH 與
Sac-KARI-NADH 兩種複合物晶體結構,解析度分別為2.72 Å 與 1.68 Å 。分析
Sac-KARI 與兩種輔酶複合物結構,發現於活化位β2αB-loop 構形並無明顯改變,但在
Sac-KARI-NADH 結構中發現來自母液的磷酸根佔據了相對於Sac-KARI-NADPH 結
構中NADPH 的2 端磷酸根基團的位置。並於高溫的酵素動力學實驗,比較不同的緩
衝液(HEPES 與磷酸鹽) 對Sac-KARI 相對活性的影響。其結果表示當酵素在使用
NADH 時,在緩衝液含有磷酸根離子環境中,會有相對較高的活性。證實了磷酸根或
是硫酸根離子是可以幫助Sac-KARI 在使用NADH 時的催化活性 。
Abstract
Ketol-acid reductoisomerase (KARI) is the second enzyme in branched chain amino acid
(BCAA) biosynthetic pathway. The catalytic reaction of this bi-functional enzyme is consisted
of two steps, including Mg2+-dependent alkyl migration, followed by the
NAD(P)H-dependent reduction reaction. In the previous study, we found that KARI from
Sulfolobus acidocaldarius (Sac-KARI) is a thermostable and bi-cofactor-utilizing enzyme. In
this study, we determined two crystal structures of Sac-KARI-NADPH (2.72 Å) and
Sac-KARI-NADH (1.68 Å) complexes. The crystal structural analysis shows that R49
undergoes the typical π-cation stacking interaction against the adenine ring and forms a salt
bridge with the 2´-phosphate of the NADPH. The S53 forms H bonds both with 2´-phosphate
and 3´-OH of the NADPH. The R49 and S53 make similar contacts with NADH, however, the
phosphate ions mimic the 2´-phosphate of NADPH in the cofactor binding pocket. The
enzyme activity assays further confirm that the Sac-KARI has higher activity in the phosphate
than that in the HEPES buffer at 50ºC by using NADH as a cofactor. On the other hand, the
optimum pH for Sac-KARI activity is in the pH range of 7-7.5 at 50ºC.
1. Brock, T. D.; Brock, K. M.; Belly, R. T.; Weiss, R. L., Sulfolobus: A new genus of
sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie
1972, 84 (1), 54-68.
2. Chen, L.; Brügger, K.; Skovgaard, M.; Redder, P.; She, Q.; Torarinsson, E.; Greve, B.;
Awayez, M.; Zibat, A.; Klenk, H.-P.; Garrett, R. A., The Genome of Sulfolobus
acidocaldarius, a Model Organism of the Crenarchaeota. Journal of Bacteriology 2005,
187, 4992-4999.
3. Andersson, A. F.; Lundgren, M.; Eriksson, S.; Rosenlund, M.; Bernander, R.; Nilsson, P.,
Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biology 2006, 7
(10), R99.
4. Vothknecht, U. C.; Tumbula, D. L., Archaea: from genomics to physiology and the origin
of life. Trends in Cell Biology 1999, 9 (4), 159-161.
5. Chen, C.-Y.; Ko, T.-P.; Lin, K.-F.; Lin, B.-L.; Huang, C.-H.; Chiang, C.-H.; Horng, J.-C.,
NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from
Sulfolobus acidocaldarius. Scientific Reports 2018, 8 (1), 7176.
6. Wong, S.-H.; Lonhienne, T. G. A.; Winzor, D. J.; Schenk, G.; Guddat, L. W., Bacterial and
Plant Ketol-Acid Reductoisomerases Have Different Mechanisms of Induced Fit during
the Catalytic Cycle. Journal of Molecular Biology 2012, 424 (3), 168-179.
7. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Lin, K.-F.; Huang, C.-H.; Hsieh, D.-L.; Ko, T.-P.;
Tsai, M.-D., Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor
Bispecificity of Ketol-Acid Reductoisomerase. Journal of the American Chemical Society
2019, 141 (15), 6136-6140.
8. Brinkmann-Chen, S.; Flock, T.; Cahn, J. K. B.; Snow, C. D.; Brustad, E. M.; McIntosh, J.
A.; Meinhold, P.; Zhang, L.; Arnold, F. H., General approach to reversing ketol-acid
reductoisomerase cofactor dependence from NADPH to NADH. Proceedings of the
National Academy of Sciences 2013, 110, 10946-10951.
9. Park, J. H.; Lee, S. Y., Fermentative production of branched chain amino acids: a focus on
metabolic engineering. Appl Microbiol Biotechnol 2010, 85 (3), 491-506.
10. Atsumi, S.; Cann, A. F.; Connor, M. R.; Shen, C. R.; Smith, K. M.; Brynildsen, M. P.;
Chou, K. J. Y.; Hanai, T.; Liao, J. C., Metabolic engineering of Escherichia coli for
1-butanol production. Metabolic Engineering 2008, 10 (6), 305-311.
11. Atsumi, S.; Hanai, T.; Liao, J. C., Non-fermentative pathways for synthesis of
branched-chain higher alcohols as biofuels. Nature 2008, 451 (7174), 86-89.
12. Atsumi, S.; Wu, T.-Y.; Eckl, E.-M.; Hawkins, S. D.; Buelter, T.; Liao, J. C., Engineering
the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde
reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85 (3), 651-657.
13. Bastian, S.; Liu, X.; Meyerowitz, J. T.; Snow, C. D.; Chen, M. M. Y.; Arnold, F. H.,
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic
2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic
Engineering 2011, 13 (3), 345-352.
14. Nissen, T. L.; Anderlund, M.; Nielsen, J.; Villadsen, J.; Kielland-Brandt, M. C.,
Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in
formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18 (1),
19-32.
15. Amorim Franco, T. M.; Blanchard, J. S., Bacterial Branched-Chain Amino Acid
Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017, 56 (44),
5849-5865.
16. Patel, K. M.; Teran, D.; Zheng, S.; Kandale, A.; Garcia, M.; Lv, Y.; Schembri, M. A.;
McGeary, R. P.; Schenk, G.; Guddat, L. W., Crystal Structures of Staphylococcus aureus
Ketol-Acid Reductoisomerase in Complex with Two Transition State Analogues that Have
Biocidal Activity. Chemistry – A European Journal 2017, 23 (72), 18289-18295.
17. Dumas, R.; Cornillon-Bertrand, C.; Guigue-Talet, P.; Genix, P.; Douce, R.; Job, D.,
Interactions of plant acetohydroxy acid isomeroreductase with reaction intermediate
analogues: correlation of the slow, competitive, inhibition kinetics of enzyme activity and
herbicidal effects. Biochemical Journal 1994, 301 (3), 813-820.
18. Bayaraa, T.; Kurz, J. L.; Patel, K. M.; Hussein, W. M.; Bilyj, J. K.; West, N. P.; Schenk, G.;
McGeary, R. P.; Guddat, L. W., Discovery, synthesis and evaluation of a novel ketol-acid
reductoisomerase inhibitor. Chemistry – A European Journal 2020, n/a (n/a), doi:
10.1002/chem.202000899.
19. Brinkmann-Chen, S.; Cahn, J. K. B.; Arnold, F. H., Uncovering rare NADH-preferring
ketol-acid reductoisomerases. Metabolic Engineering 2014, 26, 17-22.
20. Wu, J. T.; Wu, L. H.; Knight, J. A., Stability of NADPH: effect of various factors on the
kinetics of degradation. Clin Chem 1986, 32 (2), 314-319.
21. De Ruyck, J.; Famerée, M.; Wouters, J.; Perpète, E. A.; Preat, J.; Jacquemin, D., Towards
the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator
of dehydrogenase enzymatic activity. Chemical Physics Letters 2007, 450 (1), 119-122.
22. Cahn, Jackson K. B.; Brinkmann-Chen, S.; Spatzal, T.; Wiig, Jared A.; Buller, Andrew R.;
Einsle, O.; Hu, Y.; Ribbe, Markus W.; Arnold, Frances H., Cofactor specificity motifs and
the induced fit mechanism in class I ketol-acid reductoisomerases. Biochemical Journal
2015, 468 (3), 475-484.
23. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Huang, C.-H.; Tsai, M.-D., Temperature-Resolved
Cryo-EM Uncovers Structural Bases of Temperature-Dependent Enzyme Functions.
Journal of the American Chemical Society 2019, 141 (51), 19983-19987.