| 研究生: |
院繼祖 Ji-Zu Yuan |
|---|---|
| 論文名稱: |
低溫成長氮化鎵的光電性質 The electrical and optical properties of low temperature-growth GaN |
| 指導教授: |
徐子民
Tzu-Min Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 低溫氮化鎵 |
| 外文關鍵詞: | low-temperature growth GaN |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本論文中,我們利用光學方法(改變外加偏壓的電場調制反射光譜)再配合電學方法(電容-電壓量測)的修正得到了鎳/金-低溫氮化鎵覆蓋層-氮化鎵結構的蕭基能障,同時也量測無此低溫覆蓋層的相同樣品作為對照組。而後為了進一步了解低溫成長氮化鎵的缺陷,我們將兩樣品做穿透光譜量測,發現有低溫氮化鎵覆蓋層的樣品有著較多的缺陷,而後再以導納量測求得缺陷活化能。
為了更單純了解低溫成長氮化鎵的缺陷及其與常溫成長氮化鎵在晶格排列上的差異,我們另準備了低溫(常溫)成長的氮化鎵塊材,及將低溫氮化鎵作快速熱退火處理以穿透光譜量測來作比較。又為了增加低溫氮化鎵的導電性我們將其用矽作離子佈值後再加以不同時間的熱退火處理,再同樣以穿透光譜量測,分析其缺陷。
Abstract
We hve measured the Schottky barrier height of Ni/Au-GaN with and without LT-GaN cap layer by electromodulation spectroscopy method.
To understand the defect caused by the covered LT-GaN cap layer, we also perform the transmission and admittance measurement for experimental sample. Further more, we perform transmission measurement for series samples including LT-GaN bulk, LT-GaN bulk with RTA process, LT-GaN bulk with implantation process, and LT-GaN bulk with implantation and RTA process.
參考資料
1.M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, and M. Blasingame
Appl. Phys. Lett. 60, 2917 (1992).
2.Shuji Nakamura, Takashi Mukai, and Masayuki Senoh, Appl. Phys. Lett. 64, 1687(1994).
3.Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao
Yamada, Toshio Matsushita, Yasunobu Sugimoto, and Hiroyuki Kiyoku Appl. Phys. Lett. 69, 4056(1996).
4.M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G.. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai Appl. Phys. Lett. 82, 2913(2003).
5.S. Nakamura, Y. Harada, and M. Seno, Appl. Phys. Lett. 58, 2021(1991).
6.J. N. Kuznia, M. Asif Khan, and D. T. Olson J. Appl. Phys. 73, 4700,(1993).
7.N. H. Karam, T. Parodos, P. Colter, and D. McNulty Appl. Phys. Lett. 67, 94(1995).
8.A. Dissanayake, J. Y. Lin, and H. X. Jiang Appl. Phys. Lett. 65, 2317(1994).
9.C. Y. Lai, T. M. Hsu, C. L. Lin, C. C. Wu, and W. C. Lee J. Appl. Phys. 87, 8589 (2000).
10.Jorg Neugebauer and Chris G. Van de Walle Phys. Rev. B. 50, (1994).
11.Abhishek Motayed J. Appl. Phys. 92, 5218(2002)
12.B. J. Zhang, T. Egawa, G. Y. Zhao, H. Ishikawa, and M. Umeno . Appl. Phys. Lett. 79, 2567 (2001).
13.K. A. Rickert and A. B. Ellis J. Appl. Phys. 92, 6671 (2002).
14.S. K. Noh and P. Bhattacharya Appl. Phys. Lett. 78, 3642 (2001).
15.Ching-Ting Lee, Yow-Jon Lin, and Day-Shan Liu Appl. Phys. Lett. 79, 2573 (2001).
16.Fred. H. Pollak, H. Shen Materials Science and Engineering R10, 275 (1993).
17.C. Van Hoof, K. Deneffe, J. De Boeck, D. J. Arent, and G. Borghs Appl. Phys. Lett. 54, 608 (1988).
18.D. P. Wang, K. M. Huang, and T. L. Shen J. Appl. Phys. 82, 3089 (1997).
19.S. M. Sze SEMICONDUCTOR DEVICES Physics and Technology (1985).
20.D. V. Singh, K. Rim, T. O. Mitchell, J. L. Hoyt, and J. F. Gibbons, J. Appl. Phys. 85, 985 (1999).
21.B. O. Seraphin, and R. B. Hess, Phys. Rev. Lett. 14, 138, (1965).
22.D. E. Aspnes, Phys. Rev. B 10, 4228, (1974).
23.Jorg Neugebauer and Chris G. Van de Walle Phys. Rev. B. 50, (1994).
24.H. Shen, and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
25.C. F. Li, and Y. S. Huang Phys. Rev. B. 55, 9251, (1996).
26.H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta and E. H. Poindexter, Appl. Phys. Lett. 61, 1585, (1992).
27.T. M. Hsu, W. H. Chang, D. H. Liao, and W. C .Lee J. Appl. Phys. 84, 2, (1998).
28.F. Bernardini, V. Fiorentini:Phys. Rev. B57 ,1-4(15 April 1988).
29.Ho Won Jang, Jung-Hee Lee, and Jong-Lam Lee Appl. Phys. Lett. 80, 3955,(2002).
30.J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kolbas Appl. Phys. 71, 2572, (1997).
31.L. Balagurov, Appl. Phys. Lett. 68, 44, (1995).
32.D. Kbrice, J. Appl. Phys. 46, 3385, (1975).
33.A. Krtschil, H. Witte, M. Lisker, J. Christen, and A. Krost Appl. Phys. Lett. 77, 546,(2000).