| 研究生: |
高銘儀 Ming-Yi Kao |
|---|---|
| 論文名稱: |
應用3D區域成長法於腦部磁共振影像之分割 |
| 指導教授: |
曾清秀
Ching-Shiow Teseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 磁共振影像 、腦部 、影像分割 、3D區域成長法 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構式磁共振醫學影像是一種空間解析度高的影像,對軟組織如腦組織的灰值、白值及腦脊髓液具有良好的影像對比,可以利用腦組織的灰值、白值、腦脊髓液的影像亮度特徵不同,分割出腦部組織的區域。
本研究是以數位式醫學影像的T1WI磁共振影像為處理、研究的影像,以區域成長法自動將單一頻譜的磁共振影像的腦組織與非腦組織分離開來。主要分割腦部區域的內容為兩部分,一為區域成長法的前處理,以圈選腦部組織經區域成長法與膨脹處理得到概略的腦部區域,求影像腦組織的亮度平均值與亮度分佈範圍作為金字塔區域成長法的成長參數,一為金字塔式區域成長法在層層降低解析度後,再以區域成長法求出的腦部區域作為逐層恢復解析度區域成長法的成長限制區域方式自動求得腦部組織。而分割出的影像可以體積顯示法(Volume Rendering)顯示三維的腦組織影像,對醫生診斷、手術前路徑規劃、腦科學研究皆有很大的幫助。
[1]Atkins, M. and Mackiewich, B., “Fully Automatic Segmentation of the Brain in MRI”, IEEE Transactions on Medical Imaging, Vol. 17, No. 1, Feb. 1998, P98-107
[2]Dougherty, E., “Random Processes for Image and Signal Processing ”, IEEE Press, 1998, P510-519.
[3]Germond, L., Dojet, M., Taylor, C., et al., “A Cooperative Framework for Segmentation of MRI Brain Scans”, Artificial Intelligence in Medicine, 2000, P77-94.
[4]Jang, D., Lee, D., and Kim, S., “Contour Detection of Hippocampus Using Dynamic Contour Model and Region Growing”, 19th Internation Conference, IEEE/EMBS, Chicago, lL. USA., Oct. 30-Nov. 2, 1997 , P763-766.
[5]Justice, R. and Stokely, E., “3-D Segmentation of MR Brain Images Using Seeded Region Growing”,18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society ,Amsterdam 1996, P1083-1084.
[6]Lao, Z., Shen, D., and Davatzikos, C., “Statical Shape Model For Automatic Skull-Stripping of Brain Images”, http://www.rad.upenn. edu/~dgshen/papers/Lao_ISBI2002.pdf
[7]Leemput, K., Maes, F., Vandermeulen, D., et al., “Automated Model-Based Tissue Classification of MR Images of the Brain”,IEEE Transactions of Medical Imaging, Vol. 18, No. 10, Oct. 1999, P897-908.
[8]Lievin, M., Hanssen, N., Zerfass, P., et al., “3D Markov Random Fields and Region Growing for Interactive Segmentation of MR Data”, 4th International Conference on Medical Image Computing and Computer-Assisted Intervention , Utrecht, Oct. 2001,P14-17.
[9]National Electrical Manufacturers Association, “Digital Imaging and Communications in Medicine”, Rosslyn, Virginia 22209 USA, 2003. PS 3.3, PS 3.5, PS 3.6, PS 3.10.
[10]Oakes, T., Koger, J., and Davidson, R., “Automated Whole-Brain Segmentation”, the Human Brain Mapping Conference, Dusseldorf, June. 1999, http://tezpur.keck.waisman.wisc.edu/~oakes /brain_segment_HBM_poster_all.pdf
[11]Rajapakse, J., Giedd, J., and Rapoport, J., “Statistical Approach to Segmentation of Single-Channel Cerebral MR Images”, IEEE Transacations on Medical Imaging, Vol. 16, No. 2, APR. 1997, P176-186.
[12]Ruan, S. and Bloyet, D., “MRF models and multifractal analysis for MRI segmentation”, 6th. Int. Conf. Signal Processing, Vol. 2, Bejin, China, Aug. 2000,P1259-1252.
[13]Schroder, M., Rehrauer, H., Seidel, K., et al. , “Spatial Information Retrieval from Remote-Sensing Images─Part II: Gibbs─Markov Random Fields”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, Sep. 1998, P1446-1445.
[14]Smith, S., “ BET: Brain Extraction Tool” ,FMRIB technical Report TR00SMS2b, http://www.fmrib.ox.ac.uk/analysis/research/ bet/bet/bet.html
[15]Tao, Y., Grosky, W., Zamorano, L., et al., “Segmentation and Representation of Lesions in the MRI Brain Images”, Proccedings of SPIE Medical Imaging , Feb. 1999, P930-939.
[16]Weisenseel, R., Karl, W., Castanon, D., et al., “MRF-based Algorithms for Segmentation of SAR Images”, Proceedings of the 1998 IEEE International Conference on Image Processing, Chicago, Illinois, Vol. 3, Oct. 1998, P770-774. http://acadia.bu.edu/lorax/talks/ ICIP98.pdf
[17]Woodward, P., “MRI for Technologists”, McGraw-Hill, Nov. 2000, P13-39, P67-91
[18]Wells, W., Grimson, W., Kikinis, R., et al., “Adaptive Segmentation of MRI Data”, IEEE Transactions on Medical Imaging, Vol. 15, No. 4, Aug. 1996, P429-442.
[19]Xu, C., Yezzi, A., and Prince, J., “On the Relationship between Parametric and Geometric Active Contours”, 34th Asilomar conference on Signals, Systems, and Computers, Oct. 2000, P483-489.
[20]Zhang, Y., Brady, M., and Smith, S., “Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm”, IEEE Transactions on Medical Imaging, Vol. 20, No. 1, Jan. 2001,P45-57.
[21]“Markov Random Fields and Gibbs Distributions”, http://research. microsoft.com/~szli/MRF_Book/Chapter_1/node9.html
[22]胡明一 、陳懿慧、謝慧瑛等人編譯, “人體解剖學”,藝軒圖書出版,民國88年,P258-326.
[23]莊克士, “ 醫學影像物理學”, 合記圖書出版社, 民國87年10月
[24]曾文毅, “磁振造影基本原理”, P1-37, http://ceiba.cc.ntu.edu.tw/ mbp/course1.html
[25]楊武智, “影像處理與辨認”, 全華科技圖書, 民國90年3月, P39-61,86-113.