跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹嫚津
Man-Chin Tsao
論文名稱: 磁力輔助內圓孔螺旋研拋加工之研究
The study on magnetic-assisted spiral polishing of inner wall of bores.
指導教授: 顏炳華
Biing-Hwa Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 磁力輔助螺旋研拋加工內孔拋光磨料流動加工
外文關鍵詞: spiral polishing, abrasive flow finishing, magnetic-assisted spiral polishing, the polishing of inner wall
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗之研究是利用一螺桿旋轉驅動碳化矽與磁性熱熔膠粒磨料,並在工件外圍增置一強力磁鐵,磨料內的磁性熱熔膠粒受到磁鐵吸引,擠壓碳化矽磨粒對工件內圓孔表面的螺旋研磨拋光。藉由控制磁通量密度、碳化矽粒徑、碳化矽重量、磁性熱熔膠粒重量、矽油黏度、主軸轉速、加工時間和加工間隙等加工參數,探討對1.工作溫度、2.磨料黏度、3.表面粗糙度與4.材料去除率的影響,並找出最佳參數組合;同時亦觀察實驗後,各加工參數對工件表面形貌之影響。
    由實驗結果顯示,隨著加工時間的增加,磨料會呈現良好的流動性,此特性有利於精微之螺旋研拋,使達成理想之表面精拋效果。而選用磁通量密度90mT的磁鐵、粒徑22μm、重量120g的碳化矽磨粒、黏度2000mm2/s的矽油、加工轉速4000rpm和加工間隙6mm可獲得最佳的表面改善效果,有效的將工件表面粗糙度從0.9μm降至0.094μm。


    The study is on the spiral polishing of the inner wall of bores through abrasive flow by means of the grinding materials of silicon carbide and magnetic hot melt particles, propelled by a spiral spindle and a circular neodymiμm magnet around the work piece. The neodymiμm magnet functioned as driving the magnetic hot melt particles and forcing the silicon carbide to polish the inner surface of bores. In the experiment, the factors investigated included the effects upon working temperature, abrasive viscosity, surface roughness, material removal by controlling magnetic flux density, size of silicon carbide particles, weight of silicon carbide particles, weight of magnetic hot melt particles, silicone oil viscosity, spindle rotation speed, machining time, and machining gap. In addition, sets of polishing parameters on the polished surface were examined to find the best parameter setting.
    The result of the experiment suggested that with the increase of machining time, the liquidity of abrasive rose, and a more ideal polishing effect could be achieved. Based on the results, the best polishing effect might be obtained through the use of a 90mT neodymiμm magnet, 22μm SiC particles, 120 grams of SiC particles, 2000mm2/s viscosity of silicone oil, 4000rpm rotation speed, and a 6mm-machining gap. The surface roughness was effectively improved from Ra 0.9μm to Ra 0.094μm.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機與背景 2 1-3 研究目的與方法 4 第二章 基本原理介紹 5 2-1 作動方式 5 2-2 加工特性 6 2-3 前置實驗 7 第三章 實驗設備、材料與方法 10 3-1 實驗設備 10 3-2 實驗材料 14 3-2-1 磁性熱熔膠粒混合磨料 14 3-2-1-1 碳化矽顆粒 14 3-2-1-2 矽油 15 3-2-1-3 磁性熱融膠粒 16 3-2-2 工件材料 17 3-2-3 磁鐵 19 3-3 實驗儀器 20 3-4 研究方法 22 3-4-1 田口實驗計劃法 22 3-4-2 變異數分析(Analysis of variance, ANOVA) 23 3-4-3 訊號/雜音比(Signal/Noise Ratio,S/N Ration) 24 3-4-4 實驗設計規劃 25 第四章 結果與討論 27 4-1 加工參數設定 27 4-1-1 因子水準設定 27 4-1-2 直交表配置 29 4-1-3 因子效果回應分析 29 4-1-4 變異數分析(ANOVA)及F檢定(F-test) 32 4-1-5 驗證實驗 34 4-1-6 單因子驗證 35 4-1-6-1 實驗條件與實驗規劃 35 4-2 加工參數與表面粗糙度之關係 36 4-2-1 磁通量密度對表面粗糙度之影響 36 4-2-2 碳化矽粒徑對表面粗糙度的影響 38 4-2-3 碳化矽重量對表面粗糙度的影響 41 4-2-4 磁性熱熔膠粒重量對表面粗糙度的影響 43 4-2-5 矽油黏度對表面粗糙度的影響 45 4-2-6 主軸轉速對表面粗糙度的影響 47 4-2-7 加工間隙對表面粗糙度的影響 49 4-2-8 加工時間對表面粗糙度的影響 51 4-3 加工參數與材料移除量之關係 53 4-3-1磁通量密度對材料移除量之影響 53 4-3-2碳化矽粒徑對材料移除量的影響 54 4-3-3 碳化矽重量對材料移除量的影響 55 4-3-4 磁性熱熔膠粒對材料移除量的影響 56 4-3-5矽油黏度對材料移除量的影響 57 4-4 加工參數與磨料黏度之關係 58 4-4-1 碳化矽粒徑對磨料黏度的影響 58 4-4-2 碳化矽重量對磨料黏度的影響 59 4-4-3 加工時間對磨料黏度的影響 60 4-5 加工參數與磨料溫度之關係 61 4-5-1 主軸轉速對磨料溫度的影響 61 4-5-2 加工時間對磨料溫度的影響 62 第五章 結論 63 參考文獻 64

    [1]R. S. Walia, H. S. Shan, P. Kμmar, “Abrasive flow machining with additional centrifugal force applied to the media.”, Machining Science and Technology, Vol 10, pp.341-354, July-September 2006.
    [2]Mamilla Ravi Sankar, S. Mondal, J.Ramkμmar, V. K. Jain, “Experimental investigations and modeling of drill bit-guided abrasive flow finishing (DBG-AFF) process”, International Journal of Advanced Manufacturing Technology, Vol 42, pp.678-688, July 2008.
    [3]Kamal K. Kar, N.L. Ravikμmar, Piyushkμmar B. Tailon, J. Ramkμmar and D. Sathiyamoorthy, “Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process”, Journal of Materials Processing Technology, Vol 209, pp.2212-2221, February 2009.
    [4]K. Hanada, H. Yamaguchi, H. Zhou, “New spherical magnetic abrasives with carried diamond particles for internal finishing of capillary tubes”, Diamond and Related Materials, Vol 17, pp.1434-1437, July-October 2008.
    [5]M. Ravi Sankar, V.K. Jain , J. Ramkμmar, “Rotational abrasive flow finishing (R-AFF) process and its effects on finished surface topography”, International Journal of Machine Tools and Manufacture, Vol 50, pp.637-650, July 2010
    [6]Mamilla Ravi Sankar, V.K. Jain, J. Ramkμmar, “Experimental investigations into rotating workpiece abrasive flow finishing”, Wear, Vol 267, pp.43-51, June 2009.
    [7]Sunil Jha and V. K. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process”, International Journal of Machine Tools and Manufacture, Vol 44, pp.1019-1029, August 2004.

    [8]Sehijpal Singh, H.S. Shan, “Development of magneto abrasive flow machining process”, International Journal of Machine Tools & Manufacture, Vol 42, pp.953-959, June 2002.
    [9]Amit M. Wani, Vinod Yadava, Atul Khatri, “Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF)”, Journal of Materials Processing Technology, Vol 190, pp.282-290, July 2007.
    [10]電機工程手冊編輯委員會,機械工程手冊2-鋼材料,五南出版社,台北, 2009。
    [11]G.Taguchi, Introduction to Quality Engineering: Designing quality into Products and Processes, Asian productivity organization, Tokyo, 1990.
    [12]Douglas C. Montgomery, Design and Analysis of Experiments, Wiley, Singapore, 1990.
    [13]R.A. Fisher, Statistical Methods for Research Workers, Olive and Boyd, London, 1925.
    [14]P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw Hill, New York, 1992.

    QR CODE
    :::